5.1 KiB
Layer-wise Benchmarks
Generate profiles
Run with MPI
Step 1: Start a container using Docker, Enroot or others. Please refer to ../../jenkins/current_image_tags.properties for the Docker image URI.
Step 2: In the container, install tensorrt_llm:
pip install -e ../..
Step 3: In the container, run benchmarks and generate profiles:
# Run DeepSeek-R1 NVFP4
NP=4 ./mpi_launch.sh ./run_single.sh config_ctx.yaml
NP=4 ./mpi_launch.sh ./run_single.sh config_gen.yaml
# Run DeepSeek-V3.2-Exp
NP=4 ./mpi_launch.sh ./run_single.sh config_ctx.yaml --model deepseek-ai/DeepSeek-V3.2-Exp --tokens-per-block 64 --moe-backend DEEPGEMM
NP=4 ./mpi_launch.sh ./run_single.sh config_gen.yaml --model deepseek-ai/DeepSeek-V3.2-Exp --tokens-per-block 64 --moe-backend DEEPGEMM
# Run DeepSeek-V3.2-Exp with 32k context length
NP=4 ./mpi_launch.sh ./run_single.sh config_ctx.yaml --model deepseek-ai/DeepSeek-V3.2-Exp --tokens-per-block 64 --max-seq-len $((32768 + 1024 + 4)) --moe-backend DEEPGEMM --batch-size 1 --seq-len-q 32769
NP=4 ./mpi_launch.sh ./run_single.sh config_gen.yaml --model deepseek-ai/DeepSeek-V3.2-Exp --tokens-per-block 64 --max-seq-len $((32768 + 1024 + 4)) --moe-backend DEEPGEMM --seq-len-kv-cache 32769
# Run with attention TP
NP=4 ./mpi_launch.sh ./run_single.sh config_gen.yaml --no-enable-attention-dp
NP=4 ./mpi_launch.sh ./run_single.sh config_ctx.yaml --no-enable-attention-dp
# Run with attention TP and TRTLLMGen
NP=4 TRTLLM_ENABLE_PDL=1 ./mpi_launch.sh ./run_single.sh config_ctx.yaml --no-enable-attention-dp --moe-backend TRTLLM
NP=4 TRTLLM_ENABLE_PDL=1 ./mpi_launch.sh ./run_single.sh config_gen.yaml --no-enable-attention-dp --moe-backend TRTLLM
# Run with MTP3
NP=4 ./mpi_launch.sh ./run_single.sh config_gen.yaml --batch-size 32 --seq-len-q 4
# Run 4 layers
NP=4 ./mpi_launch.sh ./run_single.sh config_ctx.yaml --layer-indices 5,6,7,8
NP=4 ./mpi_launch.sh ./run_single.sh config_gen.yaml --layer-indices 5,6,7,8
# Scale DEP=16 to 4 GPUs: reduce the number of experts, uses MNNVL A2A if applicable
NP=4 ./mpi_launch.sh ./run_single.sh config_gen.yaml --scaled-from 16 --moe-backend WIDEEP
# Scale TEP=16 to 4 GPUs: reduce the number of attention heads and experts
NP=4 ./mpi_launch.sh ./run_single.sh config_gen.yaml --scaled-from 16 --no-enable-attention-dp
# Run Qwen3-Next (balanced routing is not implemented)
NP=2 TRTLLM_ENABLE_PDL=1 ./mpi_launch.sh ./run_single.sh config_ctx.yaml --model Qwen/Qwen3-Next-80B-A3B-Instruct --layer-indices 6,7 --no-enable-attention-dp --moe-backend TRTLLM --balance-method NotModified
NP=2 TRTLLM_ENABLE_PDL=1 ./mpi_launch.sh ./run_single.sh config_gen.yaml --model Qwen/Qwen3-Next-80B-A3B-Instruct --layer-indices 6,7 --no-enable-attention-dp --moe-backend TRTLLM --balance-method NotModified
# Run with DeepEP A2A
NP=4 TRTLLM_FORCE_ALLTOALL_METHOD=DeepEP ./mpi_launch.sh ./run_single.sh config_ctx.yaml --moe-backend WIDEEP
NP=4 TRTLLM_FORCE_ALLTOALL_METHOD=DeepEP ./mpi_launch.sh ./run_single.sh config_gen.yaml --moe-backend WIDEEP
Run with Slurm
Tips: If you have a running job with environment installed, please skip step 1 and 2 and go straight to step 3. In this case, your job must be run with
--container-name aaa, and if the container name is not "layer_wise_benchmarks" pleaseexport CONTAINER_NAME=aaa.
Step 1: On the controller node, allocate one or multiple nodes, and record the SLURM_JOB_ID:
SLURM_JOB_ID=$(NODES=4 TIME=02:00:00 ./slurm_alloc.sh)
Please fill the variables in ./slurm_alloc.sh.
Step 2: Start a container and install tensorrt_llm. Run the following command on the controller node:
SLURM_JOB_ID=$SLURM_JOB_ID ./slurm_init_containers.sh
It uses the image recorded in ../../jenkins/current_image_tags.properties. The image will be downloaded to ../../enroot/ for once.
Step 3: Run benchmarks to generate profiles. Run the following command on the controller node, where NODES ≤ the number of allocated nodes:
# Run DeepSeek-R1 NVFP4 with wide ep: uses MNNVL A2A if applicable
SLURM_JOB_ID=$SLURM_JOB_ID NODES=4 NP=16 ./slurm_launch.sh ./run_single.sh config_gen.yaml --moe-backend WIDEEP
# Run with attention TP and TRTLLMGen
SLURM_JOB_ID=$SLURM_JOB_ID NODES=4 NP=16 TRTLLM_ENABLE_PDL=1 ./slurm_launch.sh ./run_single.sh config_gen.yaml --no-enable-attention-dp --moe-backend TRTLLM
# Run with DeepEPLowLatency
SLURM_JOB_ID=$SLURM_JOB_ID NODES=4 NP=16 TRTLLM_FORCE_ALLTOALL_METHOD=DeepEPLowLatency ./slurm_launch.sh ./run_single.sh config_gen.yaml --moe-backend WIDEEP
# You can run 4-GPU and 8-GPU tasks without reallocate the slurm job
SLURM_JOB_ID=$SLURM_JOB_ID NODES=1 NP=4 ./slurm_launch.sh ./run_single.sh config_ctx.yaml
SLURM_JOB_ID=$SLURM_JOB_ID NODES=2 NP=8 ./slurm_launch.sh ./run_single.sh config_ctx.yaml
Parse profiles
Coming soon.
Trouble shooting
-
Error
fp8 blockscale gemm only support Hopperon Blackwell.The default MoE backend "CUTLASS" does not support FP8 weights. Please choose the same MoE backend as your end-to-end config. A typical choice is adding
--moe-backend DEEPGEMM,--moe-backend TRTLLM, or--moe-backend WIDEEPoption.