TensorRT-LLMs/examples/eagle/README.md
Dan Blanaru 16d2467ea8 Update TensorRT-LLM (#2755)
* Update TensorRT-LLM

---------

Co-authored-by: Denis Kayshev <topenkoff@gmail.com>
Co-authored-by: akhoroshev <arthoroshev@gmail.com>
Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com>

Update
2025-02-11 03:01:00 +00:00

191 lines
13 KiB
Markdown

# EAGLE speculative Decoding
This document shows how to build and run a model using EAGLE decoding ([`GitHub`](https://github.com/SafeAILab/EAGLE/tree/main), [`BLOG`](https://sites.google.com/view/eagle-llm)) in TensorRT-LLM on a single node with one or multiple GPUs.
## Overview
Different from other models, EAGLE decoding needs a base model and an EAGLE model.
The TensorRT-LLM EAGLE decoding implementation can be found in [tensorrt_llm/models/eagle/model.py](../../tensorrt_llm/models/eagle/model.py).
The implementation adds an EAGLE drafter network to a base model.
For more info about EAGLE, refer to [speculative decoding documentation](https://nvidia.github.io/TensorRT-LLM/advanced/speculative-decoding.html).
## Limitations
* EAGLE-2 is not supported.
* All EAGLE choices have to have exactly the same depth as `num_eagle_layers` of the engine.
* Pipeline parallelism is not supported.
## Support Matrix
* GPU Compute Capability >= 8.0 (Ampere or newer)
* FP16/BF16
* Paged KV cache
* Inflight-fused-batching
* C++ runtime
* Tensor Parallel
This example is based on the Vicuna-7b v1.3 model, a fine-tuned Llama. With some modifications, you can add EAGLE to other base models as well. Some TensorRT-LLM models might not work with EAGLE due to the missing head size in the speculative decoding XQA attention kernels.
## Usage
The TensorRT-LLM EAGLE example code is located in [`examples/eagle`](./). There is one [`convert_checkpoint.py`](./convert_checkpoint.py) file to convert and build the [TensorRT](https://developer.nvidia.com/tensorrt) engine(s) needed to run models with EAGLE decoding support.
In this example, we use the model from HuggingFace [`yuhuili/EAGLE-Vicuna-7B-v1.3`](https://huggingface.co/yuhuili/EAGLE-Vicuna-7B-v1.3), which is a LLAMA-based model.
### Build TensorRT engine(s)
Get the weights by downloading the base model [`vicuna-7b-v1.3`](https://huggingface.co/lmsys/vicuna-7b-v1.3) and the EAGLE draft model [`EAGLE-Vicuna-7B-v1.3`](https://huggingface.co/yuhuili/EAGLE-Vicuna-7B-v1.3) from HF.
```
pip install -r requirements.txt
git lfs install
git clone https://huggingface.co/lmsys/vicuna-7b-v1.3
https://huggingface.co/yuhuili/EAGLE-Vicuna-7B-v1.3
```
Here is the example:
```bash
# Convert and Build EAGLE decoding support for vicuna-7b-v1.3
python convert_checkpoint.py --model_dir ./vicuna-7b-v1.3 \
--eagle_model_dir EAGLE-Vicuna-7B-v1.3 \
--output_dir ./tllm_checkpoint_1gpu_eagle \
--dtype float16 \
--max_draft_len 63 \
--num_eagle_layers 4 \
--max_non_leaves_per_layer 10
# Note: Increasing the batch size may have a negative impact on performance
trtllm-build --checkpoint_dir ./tllm_checkpoint_1gpu_eagle \
--output_dir ./tmp/eagle/7B/trt_engines/fp16/1-gpu/ \
--gemm_plugin float16 \
--use_paged_context_fmha enable \
--speculative_decoding_mode eagle \
--max_batch_size 4
# Convert and Build EAGLE decoding support for vicuna-7b-v1.3 with 4-way tensor parallelism.
python convert_checkpoint.py --model_dir ./vicuna-7b-v1.3 \
--eagle_model_dir EAGLE-Vicuna-7B-v1.3 \
--output_dir ./tllm_checkpoint_4gpu_eagle \
--dtype float16 \
--max_draft_len 63 \
--num_eagle_layers 4 \
--max_non_leaves_per_layer 10 \
--tp_size 4 \
--workers 4
trtllm-build --checkpoint_dir ./tllm_checkpoint_4gpu_eagle \
--output_dir ./tmp/eagle/7B/trt_engines/fp16/4-gpu/ \
--gemm_plugin float16 \
--use_paged_context_fmha enable \
--speculative_decoding_mode eagle \
--max_batch_size 4
```
### Run
To run a TensorRT-LLM model with EAGLE-1 decoding support, you can use `../run.py` script, with an additional argument
`--eagle_choices`.
The `--eagle_choices` argument is of type `list[list[int]]`. If you do not specify any choices, the
default, [mc_sim_7b_63](https://github.com/FasterDecoding/Medusa/blob/main/medusa/model/medusa_choices.py#L1) choices
are used. For more information regarding choices tree, refer
to [Medusa Tree](https://nvidia.github.io/TensorRT-LLM/advanced/speculative-decoding.html#medusa-tree).
The number of non-leaf nodes at each level can not exceed `max_non_leaves_per_layer` set
to `convert_checkpoint`. For example, in the tree below (`mc_sim_7b_63`) the minimum number of
`max_non_leaves_per_layer` is 10. There are exactly 10 non leaf nodes at depth 0, check `[0, 0], [1, 0], ..., [9, 0]`.
The maximum depth, meaning the maximum length of inner `list[int]` specified in the `--eagle_choices` argument, should
be equal to `num_eagle_layers`.
To run non-greedy sampling and use typical acceptance, set `--eagle_posterior_threshold` to `run.py`. `eagle_posterior_threshold` corresponds to epsilon in typical acceptance criteria from [Medusa paper](https://arxiv.org/pdf/2401.10774).
`--temperature` can be specified as well. When no `--eagle_posterior_threshold` is specified or `--temperature=0.0` is set, greedy sampling is used.
#### Run EAGLE-2
**EAGLE-2 is still under the experimental stage.**
EAGLE-2 can be enabled with 2 runtime flags (`--eagle_use_dynamic_tree` and `--eagle_dynamic_tree_max_top_k=N`). The same engine can be used for EAGLE-1 and EAGLE-2. Eagle choices must not be set in case of EAGLE-2. EAGLE-2 will generate the tree corresponding to choices dynamically in the runtime. For more details, please refer to [EAGLE-2 paper](https://arxiv.org/pdf/2406.16858).
When using EAGLE-2, please enable `--eagle_use_dynamic_tree`, which indicates whether to use a dynamic tree (default is `False`, i.e., use EAGLE-1 by default). Then set `--eagle_dynamic_tree_max_top_k=N`, which indicates how many new child nodes are expanded for the nodes in the dynamic tree.
- In EagleNet0, `N` draft tokens are generated.
- In EagleNet1, each draft token expands `N` new draft tokens. Therefore, this layer has `N * N` draft tokens. We select the top `N` as the output of this layer.
- In EagleNet2, the `N` output nodes of EagleNet1 are expanded, and each node expands `N` new draft tokens. Therefore, this layer also has a total of `N * N` draft tokens. And select the top `N` as the output of this layer.
- Etc.
Finally, after `num_eagle_layer` EagleNets, `N + N * N * (num_eagle_layer - 1)` draft tokens are generated. We will rebuild the final tree based on all draft tokens and their scores. The final generated tree will have `min(N + N * N * (num_eagle_layer - 1), max_draft_tokens)` nodes.
```bash
# Eagle greedy decoding using vicuna-7b-v1.3 model with 1 GPU
python ../run.py --engine_dir ./tmp/eagle/7B/trt_engines/fp16/1-gpu/ \
--tokenizer_dir ./vicuna-7b-v1.3/ \
--max_output_len=100 \
--eagle_choices="[[0], [0, 0], [1], [0, 1], [2], [0, 0, 0], [1, 0], [0, 2], [3], [0, 3], [4], [0, 4], [2, 0], [0, 5], [0, 0, 1], [5], [0, 6], [6], [0, 7], [0, 1, 0], [1, 1], [7], [0, 8], [0, 0, 2], [3, 0], [0, 9], [8], [9], [1, 0, 0], [0, 2, 0], [1, 2], [0, 0, 3], [4, 0], [2, 1], [0, 0, 4], [0, 0, 5], [0, 0, 0, 0], [0, 1, 1], [0, 0, 6], [0, 3, 0], [5, 0], [1, 3], [0, 0, 7], [0, 0, 8], [0, 0, 9], [6, 0], [0, 4, 0], [1, 4], [7, 0], [0, 1, 2], [2, 0, 0], [3, 1], [2, 2], [8, 0], [0, 5, 0], [1, 5], [1, 0, 1], [0, 2, 1], [9, 0], [0, 6, 0], [0, 0, 0, 1], [1, 6], [0, 7, 0]]" \
--input_text "Once upon"
# Eagle typical acceptance decoding using vicuna-7b-v1.3 model with 1 GPU
python ../run.py --engine_dir ./tmp/eagle/7B/trt_engines/fp16/1-gpu/ \
--tokenizer_dir ./vicuna-7b-v1.3/ \
--max_output_len=100 \
--eagle_choices="[[0], [0, 0], [1], [0, 1], [2], [0, 0, 0], [1, 0], [0, 2], [3], [0, 3], [4], [0, 4], [2, 0], [0, 5], [0, 0, 1], [5], [0, 6], [6], [0, 7], [0, 1, 0], [1, 1], [7], [0, 8], [0, 0, 2], [3, 0], [0, 9], [8], [9], [1, 0, 0], [0, 2, 0], [1, 2], [0, 0, 3], [4, 0], [2, 1], [0, 0, 4], [0, 0, 5], [0, 0, 0, 0], [0, 1, 1], [0, 0, 6], [0, 3, 0], [5, 0], [1, 3], [0, 0, 7], [0, 0, 8], [0, 0, 9], [6, 0], [0, 4, 0], [1, 4], [7, 0], [0, 1, 2], [2, 0, 0], [3, 1], [2, 2], [8, 0], [0, 5, 0], [1, 5], [1, 0, 1], [0, 2, 1], [9, 0], [0, 6, 0], [0, 0, 0, 1], [1, 6], [0, 7, 0]]" \
--input_text "Once upon" \
--temperature 0.7 \
--eagle_posterior_threshold 0.09
# Eagle decoding using vicuna-7b-v1.3 model with 4 GPUs
mpirun -np 4 --allow-run-as-root --oversubscribe \
python ../run.py --engine_dir ./tmp/eagle/7B/trt_engines/fp16/4-gpu/ \
--tokenizer_dir ./vicuna-7b-v1.3/ \
--max_output_len=100 \
--eagle_choices="[[0], [0, 0], [1], [0, 1], [2], [0, 0, 0], [1, 0], [0, 2], [3], [0, 3], [4], [0, 4], [2, 0], [0, 5], [0, 0, 1], [5], [0, 6], [6], [0, 7], [0, 1, 0], [1, 1], [7], [0, 8], [0, 0, 2], [3, 0], [0, 9], [8], [9], [1, 0, 0], [0, 2, 0], [1, 2], [0, 0, 3], [4, 0], [2, 1], [0, 0, 4], [0, 0, 5], [0, 0, 0, 0], [0, 1, 1], [0, 0, 6], [0, 3, 0], [5, 0], [1, 3], [0, 0, 7], [0, 0, 8], [0, 0, 9], [6, 0], [0, 4, 0], [1, 4], [7, 0], [0, 1, 2], [2, 0, 0], [3, 1], [2, 2], [8, 0], [0, 5, 0], [1, 5], [1, 0, 1], [0, 2, 1], [9, 0], [0, 6, 0], [0, 0, 0, 1], [1, 6], [0, 7, 0]]" \
--input_text "Once upon"
# Run EAGLE-2
mpirun -np 1 --allow-run-as-root --oversubscribe \
python ../run.py --engine_dir ./tmp/eagle/7B/trt_engines/fp16/1-gpu/ \
--tokenizer_dir ./vicuna-7b-v1.3/ \
--max_output_len=100 \
--eagle_use_dynamic_tree \
--eagle_dynamic_tree_max_top_k 10 \
--input_text "Once upon"
```
For greedy decoding, refer to the following example output:
```text
......
Input [Text 0]: "<s> Once upon"
Output [Text 0 Beam 0]: "a time, there was a young girl who loved to read. She would spend hours in the library, devouring books of all genres. She had a special love for fairy tales, and would often dream of living in a magical world where she could meet princes and princesses, and have adventures with talking animals.
One day, while she was reading a book, she came across a passage that spoke to her heart. It said, "You are the author of"
```
### Summarization using EAGLE decoding
```bash
# EAGLE decoding using vicuna-7b-v1.3 model with 1 GPU
python ../summarize.py --engine_dir ./tmp/eagle/7B/trt_engines/fp16/1-gpu/ \
--hf_model_dir ./vicuna-7b-v1.3/ \
--tokenizer_dir ./vicuna-7b-v1.3/ \
--test_trt_llm \
--data_type fp16 \
--eagle_choices="[[0], [0, 0], [1], [0, 1], [2], [0, 0, 0], [1, 0], [0, 2], [3], [0, 3], [4], [0, 4], [2, 0], [0, 5], [0, 0, 1], [5], [0, 6], [6], [0, 7], [0, 1, 0], [1, 1], [7], [0, 8], [0, 0, 2], [3, 0], [0, 9], [8], [9], [1, 0, 0], [0, 2, 0], [1, 2], [0, 0, 3], [4, 0], [2, 1], [0, 0, 4], [0, 0, 5], [0, 0, 0, 0], [0, 1, 1], [0, 0, 6], [0, 3, 0], [5, 0], [1, 3], [0, 0, 7], [0, 0, 8], [0, 0, 9], [6, 0], [0, 4, 0], [1, 4], [7, 0], [0, 1, 2], [2, 0, 0], [3, 1], [2, 2], [8, 0], [0, 5, 0], [1, 5], [1, 0, 1], [0, 2, 1], [9, 0], [0, 6, 0], [0, 0, 0, 1], [1, 6], [0, 7, 0]]" \
--batch_size 1
# EAGLE decoding using vicuna-7b-v1.3 with 4 GPUs
mpirun -np 4 --allow-run-as-root --oversubscribe \
python ../summarize.py --engine_dir ./tmp/eagle/7B/trt_engines/fp16/4-gpu/ \
--hf_model_dir ./vicuna-7b-v1.3/ \
--tokenizer_dir ./vicuna-7b-v1.3/ \
--test_trt_llm \
--data_type fp16 \
--eagle_choices="[[0], [0, 0], [1], [0, 1], [2], [0, 0, 0], [1, 0], [0, 2], [3], [0, 3], [4], [0, 4], [2, 0], [0, 5], [0, 0, 1], [5], [0, 6], [6], [0, 7], [0, 1, 0], [1, 1], [7], [0, 8], [0, 0, 2], [3, 0], [0, 9], [8], [9], [1, 0, 0], [0, 2, 0], [1, 2], [0, 0, 3], [4, 0], [2, 1], [0, 0, 4], [0, 0, 5], [0, 0, 0, 0], [0, 1, 1], [0, 0, 6], [0, 3, 0], [5, 0], [1, 3], [0, 0, 7], [0, 0, 8], [0, 0, 9], [6, 0], [0, 4, 0], [1, 4], [7, 0], [0, 1, 2], [2, 0, 0], [3, 1], [2, 2], [8, 0], [0, 5, 0], [1, 5], [1, 0, 1], [0, 2, 1], [9, 0], [0, 6, 0], [0, 0, 0, 1], [1, 6], [0, 7, 0]]" \
--batch_size 1
# Run EAGLE-2
mpirun -np 1 --allow-run-as-root --oversubscribe \
python ../summarize.py --engine_dir ./tmp/eagle/7B/trt_engines/fp16/1-gpu/ \
--hf_model_dir ./vicuna-7b-v1.3/ \
--tokenizer_dir ./vicuna-7b-v1.3/ \
--test_trt_llm \
--data_type fp16 \
--eagle_use_dynamic_tree \
--eagle_dynamic_tree_max_top_k 10 \
--batch_size 1
```