TensorRT-LLMs/tests/functional/test_arange.py
2023-09-28 09:00:05 -07:00

92 lines
3.2 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
import tensorrt_llm
class TestFunctional(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
def test_arange_int(self):
# test data
start = 0
end = 128
dtype = 'int32'
# construct trt network
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
output = tensorrt_llm.functional.arange(start=start,
end=end,
dtype=dtype).trt_tensor
output.name = 'output'
network.mark_output(output)
output.dtype = tensorrt_llm.str_dtype_to_trt(dtype)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={})
ref = torch.arange(start, end).int()
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'],
atol=1e-5)
def test_arange_tensor(self):
# test data
s = 0
e = 128
dtype = 'int32'
# construct trt network
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
start = tensorrt_llm.functional.constant(np.array(s,
dtype=np.int32))
end_tensor = tensorrt_llm.functional.constant(
np.array([0] * e, dtype=np.int32))
output = tensorrt_llm.functional.arange(
start=start,
end=tensorrt_llm.functional.shape(end_tensor, 0),
dtype=dtype).trt_tensor
output.name = 'output'
network.mark_output(output)
output.dtype = tensorrt_llm.str_dtype_to_trt(dtype)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={})
ref = torch.arange(s, e).int()
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'],
atol=1e-5)