TensorRT-LLMs/tests/functional/test_gather.py
2023-09-20 00:29:41 -07:00

81 lines
3.0 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
import tensorrt_llm
from tensorrt_llm import Tensor
class TestFunctional(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
def test_gather(self):
dtype = 'float32'
x_data = torch.randn(2, 128, 768)
y_data = torch.tensor([101, 127]).int()
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
x = Tensor(name='x',
shape=x_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
y = Tensor(name='y',
shape=y_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt('int32'))
y = y.view(
tensorrt_llm.functional.concat(
[tensorrt_llm.functional.shape(y, 0), 1, 1]))
y = tensorrt_llm.functional.expand(
y,
tensorrt_llm.functional.concat([
tensorrt_llm.functional.shape(y, 0), 1,
tensorrt_llm.functional.shape(x, 2)
]))
output = tensorrt_llm.functional.gather(x, dim=1, indices=y).view(
tensorrt_llm.functional.concat([
tensorrt_llm.functional.shape(x, 0),
tensorrt_llm.functional.shape(x, 2)
]))
output = output.trt_tensor
output.name = 'output'
network.mark_output(output)
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={
'x': x_data.numpy(),
'y': y_data.numpy(),
})
y_data = y_data.reshape(y_data.size(0), 1, 1)
y_data = y_data.expand(y_data.size(0), 1, x_data.size(-1))
ref = torch.gather(x_data, dim=1,
index=y_data.to(dtype=torch.int64)).view(
x_data.size(0), x_data.size(2))
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'],
atol=1e-5)