mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-23 12:12:39 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Shixiaowei02 <39303645+Shixiaowei02@users.noreply.github.com>
92 lines
3.0 KiB
Python
92 lines
3.0 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import itertools
|
|
import math
|
|
import unittest
|
|
|
|
import torch
|
|
from parameterized import parameterized
|
|
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Tensor
|
|
|
|
|
|
class TestFunctional(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
@staticmethod
|
|
def gelu(x, dtype):
|
|
if dtype == 'float32':
|
|
res = torch.nn.functional.gelu(x)
|
|
else:
|
|
res = 0.5 * x * (1 + torch.tanh(
|
|
math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
|
|
return res
|
|
|
|
def skip_bf16_before_ampere(self):
|
|
sm = torch.cuda.get_device_capability()
|
|
if sm < (8, 0):
|
|
self.skipTest(
|
|
f'Skip the test because sm{sm[0]}{sm[1]} does not support '
|
|
f'bfloat16.')
|
|
|
|
@parameterized.expand(
|
|
itertools.product(
|
|
('float32', 'float16', 'bfloat16'),
|
|
(False, True),
|
|
))
|
|
def test_gelu(self, dtype, strongly_typed):
|
|
if dtype == 'bfloat16':
|
|
self.skip_bf16_before_ampere()
|
|
|
|
torch_dtype = tensorrt_llm._utils.str_dtype_to_torch(dtype)
|
|
x_shape = (12, 12, 96, 96)
|
|
x_data = torch.rand(x_shape, dtype=torch_dtype)
|
|
|
|
# construct trt network
|
|
builder = tensorrt_llm.Builder()
|
|
builder.strongly_typed = strongly_typed
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
x = Tensor(name='x',
|
|
shape=x_shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
output = tensorrt_llm.functional.gelu(x).trt_tensor
|
|
output.name = 'output'
|
|
network.mark_output(output)
|
|
|
|
# trt run
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={'x': x_data})
|
|
out = outputs['output'].to(torch_dtype)
|
|
|
|
# Reference
|
|
ref = self.gelu(x_data, dtype)
|
|
|
|
if dtype == 'bfloat16':
|
|
atol, rtol = 1e-5, 2e-2
|
|
else:
|
|
atol, rtol = 1e-5, 2e-3
|
|
torch.testing.assert_close(out, ref, atol=atol, rtol=rtol)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|