TensorRT-LLMs/tests/functional/test_identity.py
2023-09-20 00:29:41 -07:00

72 lines
2.8 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
import numpy as np
import pytest
import torch
from parameterized import parameterized
from polygraphy.backend.trt import CreateConfig, EngineFromNetwork, TrtRunner
import tensorrt_llm
from tensorrt_llm import Tensor
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.util import getSMVersion
class TestFunctional(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
@parameterized.expand([('float32', False), ('float32', True),
('float16', False), ('float16', True),
('bfloat16', False), ('bfloat16', True)])
def test_identity(self, dtype, use_plugin):
# Skip tests that are not supported in pre-ampere architecture
if getSMVersion() < 80:
if dtype == 'bfloat16':
pytest.skip(
"bfloat16 is not supported in pre-ampere architecture")
x_data = torch.randn(
(4, 6, 3, 4), dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
builder = tensorrt_llm.Builder()
net = builder.create_network()
if use_plugin:
net.plugin_config.set_identity_plugin(dtype)
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
x = Tensor(name='x',
shape=x_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.identity(x).trt_tensor
output.name = 'output'
network.mark_output(output)
output.dtype = tensorrt_llm.str_dtype_to_trt(dtype)
build_engine = EngineFromNetwork(
(builder.trt_builder, net.trt_network),
config=CreateConfig(fp16=(dtype == 'float16'),
bf16=(dtype == 'bfloat16')))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={'x': x_data})
np.testing.assert_allclose(x_data.to(torch.float32),
outputs['output'].to(torch.float32))