mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
347 lines
13 KiB
Python
347 lines
13 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Tensor
|
|
|
|
|
|
class TestFunctional(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
def test_interpolate_without_scales_nearest_5d(self):
|
|
# test data
|
|
dtype = 'float32'
|
|
input_shape = (1, 1, 8, 12, 16)
|
|
output_shape = (16, 24, 32)
|
|
|
|
input_data = torch.rand(
|
|
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
|
|
mode = 'nearest'
|
|
# construct trt network
|
|
align_corners_flag = False
|
|
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
input = Tensor(name='input',
|
|
shape=input_shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
output = tensorrt_llm.functional.interpolate(
|
|
input=input,
|
|
size=output_shape,
|
|
mode=mode,
|
|
align_corners=align_corners_flag,
|
|
).trt_tensor
|
|
output.name = 'output'
|
|
network.mark_output(output)
|
|
|
|
# trt run
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={'input': input_data.numpy()})
|
|
|
|
ref = torch.nn.functional.interpolate(input_data,
|
|
size=output_shape,
|
|
mode=mode)
|
|
|
|
np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'])
|
|
|
|
def test_interpolate_without_scales_bilinear_4d_disable_align_corner(self):
|
|
# test data
|
|
dtype = 'float32'
|
|
input_shape = (1, 1, 8, 12)
|
|
output_shape = (16, 24)
|
|
|
|
input_data = torch.rand(
|
|
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
|
|
mode = 'bilinear'
|
|
# construct trt network
|
|
align_corners_flag = False
|
|
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
input = Tensor(name='input',
|
|
shape=input_shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
output = tensorrt_llm.functional.interpolate(
|
|
input=input,
|
|
size=output_shape,
|
|
mode=mode,
|
|
align_corners=align_corners_flag,
|
|
).trt_tensor
|
|
output.name = 'output'
|
|
network.mark_output(output)
|
|
|
|
# trt run
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={'input': input_data.numpy()})
|
|
|
|
ref = torch.nn.functional.interpolate(input_data,
|
|
size=output_shape,
|
|
mode=mode)
|
|
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
outputs['output'],
|
|
atol=1e-5)
|
|
|
|
def test_interpolate_without_scales_bilinear_4d_enable_align_corner(self):
|
|
# test data
|
|
dtype = 'float32'
|
|
input_shape = (1, 1, 8, 12)
|
|
output_shape = (16, 24)
|
|
|
|
input_data = torch.rand(
|
|
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
|
|
mode = 'bilinear'
|
|
# construct trt network
|
|
align_corners_flag = True
|
|
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
input = Tensor(name='input',
|
|
shape=input_shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
output = tensorrt_llm.functional.interpolate(
|
|
input=input,
|
|
size=output_shape,
|
|
mode=mode,
|
|
align_corners=align_corners_flag,
|
|
).trt_tensor
|
|
output.name = 'output'
|
|
network.mark_output(output)
|
|
|
|
# trt run
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={'input': input_data.numpy()})
|
|
|
|
ref = torch.nn.functional.interpolate(input_data,
|
|
size=output_shape,
|
|
mode=mode)
|
|
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
outputs['output'],
|
|
atol=1e-5)
|
|
|
|
def test_interpolate_without_scales_bicubic_4d_enable_align_corner(self):
|
|
# test data
|
|
dtype = 'float32'
|
|
input_shape = (1, 4, 8, 12)
|
|
output_shape = (16, 24)
|
|
|
|
input_data = torch.rand(
|
|
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
|
|
mode = 'bicubic'
|
|
# construct trt network
|
|
align_corners_flag = True
|
|
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
input = Tensor(name='input',
|
|
shape=input_shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
output = tensorrt_llm.functional.interpolate(
|
|
input=input,
|
|
size=output_shape,
|
|
mode=mode,
|
|
align_corners=align_corners_flag,
|
|
).trt_tensor
|
|
output.name = 'output'
|
|
network.mark_output(output)
|
|
|
|
# trt run
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={'input': input_data.numpy()})
|
|
|
|
ref = torch.nn.functional.interpolate(input_data,
|
|
size=output_shape,
|
|
mode=mode)
|
|
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
outputs['output'],
|
|
atol=1e-3)
|
|
|
|
def test_interpolate_with_scale_3d_nearest_exact(self):
|
|
# test data
|
|
dtype = 'float32'
|
|
input_shape = (1, 4, 8, 16)
|
|
scales_factor = (2, 4)
|
|
input_data = torch.rand(
|
|
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
|
|
mode = 'nearest-exact'
|
|
# construct trt network
|
|
align_corners_flag = False
|
|
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
input = Tensor(name='input',
|
|
shape=input_shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
output = tensorrt_llm.functional.interpolate(
|
|
input=input,
|
|
scale_factor=scales_factor,
|
|
mode=mode,
|
|
align_corners=align_corners_flag,
|
|
).trt_tensor
|
|
output.name = 'output'
|
|
network.mark_output(output)
|
|
|
|
# trt run
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={'input': input_data.numpy()})
|
|
|
|
ref = torch.nn.functional.interpolate(input_data,
|
|
scale_factor=scales_factor,
|
|
mode=mode)
|
|
np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'])
|
|
|
|
def test_interpolate_with_scale_4d_bicubic(self):
|
|
# test data
|
|
dtype = 'float32'
|
|
input_shape = (1, 4, 8, 12)
|
|
scales_factor = (2.5, 2)
|
|
input_data = torch.rand(
|
|
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
|
|
mode = 'bicubic'
|
|
# construct trt network
|
|
align_corners_flag = False
|
|
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
input = Tensor(name='input',
|
|
shape=input_shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
output = tensorrt_llm.functional.interpolate(
|
|
input=input,
|
|
scale_factor=scales_factor,
|
|
mode=mode,
|
|
align_corners=align_corners_flag,
|
|
).trt_tensor
|
|
output.name = 'output'
|
|
network.mark_output(output)
|
|
|
|
# trt run
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={'input': input_data.numpy()})
|
|
|
|
ref = torch.nn.functional.interpolate(input_data,
|
|
scale_factor=scales_factor,
|
|
mode=mode)
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
outputs['output'],
|
|
atol=1e-5)
|
|
|
|
def test_interpolate_with_scale_4d_bilinear(self):
|
|
# test data
|
|
dtype = 'float32'
|
|
input_shape = (1, 1, 8, 32)
|
|
scales_factor = (2.5, 4)
|
|
input_data = torch.rand(
|
|
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
|
|
mode = 'bilinear'
|
|
# construct trt network
|
|
align_corners_flag = False
|
|
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
input = Tensor(name='input',
|
|
shape=input_shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
output = tensorrt_llm.functional.interpolate(
|
|
input=input,
|
|
scale_factor=scales_factor,
|
|
mode=mode,
|
|
align_corners=align_corners_flag,
|
|
).trt_tensor
|
|
output.name = 'output'
|
|
network.mark_output(output)
|
|
|
|
# trt run
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={'input': input_data.numpy()})
|
|
|
|
ref = torch.nn.functional.interpolate(input_data,
|
|
scale_factor=scales_factor,
|
|
align_corners=align_corners_flag,
|
|
mode=mode)
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
outputs['output'],
|
|
atol=1e-5)
|
|
|
|
def test_interpolate_with_scale_5d_trilinear_enable_align_corner(self):
|
|
# test data
|
|
dtype = 'float32'
|
|
input_shape = (1, 1, 8, 16, 32)
|
|
scales_factor = (2.5, 2, 4)
|
|
input_data = torch.rand(
|
|
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
|
|
mode = 'trilinear'
|
|
# construct trt network
|
|
align_corners_flag = True
|
|
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
input = Tensor(name='input',
|
|
shape=input_shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
output = tensorrt_llm.functional.interpolate(
|
|
input=input,
|
|
scale_factor=scales_factor,
|
|
mode=mode,
|
|
align_corners=align_corners_flag,
|
|
).trt_tensor
|
|
output.name = 'output'
|
|
network.mark_output(output)
|
|
|
|
# trt run
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={'input': input_data.numpy()})
|
|
|
|
ref = torch.nn.functional.interpolate(input_data,
|
|
scale_factor=scales_factor,
|
|
align_corners=align_corners_flag,
|
|
mode=mode)
|
|
np.testing.assert_allclose(ref.cpu().numpy(),
|
|
outputs['output'],
|
|
atol=1e-5)
|