TensorRT-LLMs/tests/functional/test_interpolate.py
2023-09-20 00:29:41 -07:00

347 lines
13 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
import tensorrt_llm
from tensorrt_llm import Tensor
class TestFunctional(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
def test_interpolate_without_scales_nearest_5d(self):
# test data
dtype = 'float32'
input_shape = (1, 1, 8, 12, 16)
output_shape = (16, 24, 32)
input_data = torch.rand(
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
mode = 'nearest'
# construct trt network
align_corners_flag = False
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.interpolate(
input=input,
size=output_shape,
mode=mode,
align_corners=align_corners_flag,
).trt_tensor
output.name = 'output'
network.mark_output(output)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={'input': input_data.numpy()})
ref = torch.nn.functional.interpolate(input_data,
size=output_shape,
mode=mode)
np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'])
def test_interpolate_without_scales_bilinear_4d_disable_align_corner(self):
# test data
dtype = 'float32'
input_shape = (1, 1, 8, 12)
output_shape = (16, 24)
input_data = torch.rand(
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
mode = 'bilinear'
# construct trt network
align_corners_flag = False
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.interpolate(
input=input,
size=output_shape,
mode=mode,
align_corners=align_corners_flag,
).trt_tensor
output.name = 'output'
network.mark_output(output)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={'input': input_data.numpy()})
ref = torch.nn.functional.interpolate(input_data,
size=output_shape,
mode=mode)
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'],
atol=1e-5)
def test_interpolate_without_scales_bilinear_4d_enable_align_corner(self):
# test data
dtype = 'float32'
input_shape = (1, 1, 8, 12)
output_shape = (16, 24)
input_data = torch.rand(
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
mode = 'bilinear'
# construct trt network
align_corners_flag = True
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.interpolate(
input=input,
size=output_shape,
mode=mode,
align_corners=align_corners_flag,
).trt_tensor
output.name = 'output'
network.mark_output(output)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={'input': input_data.numpy()})
ref = torch.nn.functional.interpolate(input_data,
size=output_shape,
mode=mode)
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'],
atol=1e-5)
def test_interpolate_without_scales_bicubic_4d_enable_align_corner(self):
# test data
dtype = 'float32'
input_shape = (1, 4, 8, 12)
output_shape = (16, 24)
input_data = torch.rand(
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
mode = 'bicubic'
# construct trt network
align_corners_flag = True
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.interpolate(
input=input,
size=output_shape,
mode=mode,
align_corners=align_corners_flag,
).trt_tensor
output.name = 'output'
network.mark_output(output)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={'input': input_data.numpy()})
ref = torch.nn.functional.interpolate(input_data,
size=output_shape,
mode=mode)
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'],
atol=1e-3)
def test_interpolate_with_scale_3d_nearest_exact(self):
# test data
dtype = 'float32'
input_shape = (1, 4, 8, 16)
scales_factor = (2, 4)
input_data = torch.rand(
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
mode = 'nearest-exact'
# construct trt network
align_corners_flag = False
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.interpolate(
input=input,
scale_factor=scales_factor,
mode=mode,
align_corners=align_corners_flag,
).trt_tensor
output.name = 'output'
network.mark_output(output)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={'input': input_data.numpy()})
ref = torch.nn.functional.interpolate(input_data,
scale_factor=scales_factor,
mode=mode)
np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'])
def test_interpolate_with_scale_4d_bicubic(self):
# test data
dtype = 'float32'
input_shape = (1, 4, 8, 12)
scales_factor = (2.5, 2)
input_data = torch.rand(
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
mode = 'bicubic'
# construct trt network
align_corners_flag = False
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.interpolate(
input=input,
scale_factor=scales_factor,
mode=mode,
align_corners=align_corners_flag,
).trt_tensor
output.name = 'output'
network.mark_output(output)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={'input': input_data.numpy()})
ref = torch.nn.functional.interpolate(input_data,
scale_factor=scales_factor,
mode=mode)
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'],
atol=1e-5)
def test_interpolate_with_scale_4d_bilinear(self):
# test data
dtype = 'float32'
input_shape = (1, 1, 8, 32)
scales_factor = (2.5, 4)
input_data = torch.rand(
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
mode = 'bilinear'
# construct trt network
align_corners_flag = False
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.interpolate(
input=input,
scale_factor=scales_factor,
mode=mode,
align_corners=align_corners_flag,
).trt_tensor
output.name = 'output'
network.mark_output(output)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={'input': input_data.numpy()})
ref = torch.nn.functional.interpolate(input_data,
scale_factor=scales_factor,
align_corners=align_corners_flag,
mode=mode)
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'],
atol=1e-5)
def test_interpolate_with_scale_5d_trilinear_enable_align_corner(self):
# test data
dtype = 'float32'
input_shape = (1, 1, 8, 16, 32)
scales_factor = (2.5, 2, 4)
input_data = torch.rand(
input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
mode = 'trilinear'
# construct trt network
align_corners_flag = True
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
input = Tensor(name='input',
shape=input_shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.interpolate(
input=input,
scale_factor=scales_factor,
mode=mode,
align_corners=align_corners_flag,
).trt_tensor
output.name = 'output'
network.mark_output(output)
# trt run
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={'input': input_data.numpy()})
ref = torch.nn.functional.interpolate(input_data,
scale_factor=scales_factor,
align_corners=align_corners_flag,
mode=mode)
np.testing.assert_allclose(ref.cpu().numpy(),
outputs['output'],
atol=1e-5)