TensorRT-LLMs/tests/functional/test_repeat_interleave.py
Kaiyu Xie 75b6210ff4
Kaiyu/update main (#5)
* Update

* Update
2023-10-18 22:38:53 +08:00

44 lines
1.4 KiB
Python

import unittest
import numpy as np
import torch
from parameterized import parameterized
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
import tensorrt_llm
from tensorrt_llm import Tensor
class TestFunctional(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('error')
@parameterized.expand([[0], [1], [2]])
def test_repeat_interleave(self, axis):
dtype = 'float32'
repeats = 3
x_data = torch.randn(
(2, 3, 4), dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
builder = tensorrt_llm.Builder()
net = builder.create_network()
with tensorrt_llm.net_guard(net):
network = tensorrt_llm.default_trtnet()
x = Tensor(name='x',
shape=x_data.shape,
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
output = tensorrt_llm.functional.repeat_interleave(
x, repeats, axis).trt_tensor
output.name = 'output'
network.mark_output(output)
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
with TrtRunner(build_engine) as runner:
outputs = runner.infer(feed_dict={
'x': x_data.numpy(),
})
ref = torch.repeat_interleave(x_data, repeats, axis)
np.testing.assert_allclose(ref, outputs['output'])