mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
44 lines
1.4 KiB
Python
44 lines
1.4 KiB
Python
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from parameterized import parameterized
|
|
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Tensor
|
|
|
|
|
|
class TestFunctional(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
@parameterized.expand([[0], [1], [2]])
|
|
def test_repeat_interleave(self, axis):
|
|
dtype = 'float32'
|
|
repeats = 3
|
|
x_data = torch.randn(
|
|
(2, 3, 4), dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
|
|
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
x = Tensor(name='x',
|
|
shape=x_data.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
output = tensorrt_llm.functional.repeat_interleave(
|
|
x, repeats, axis).trt_tensor
|
|
output.name = 'output'
|
|
network.mark_output(output)
|
|
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network))
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={
|
|
'x': x_data.numpy(),
|
|
})
|
|
|
|
ref = torch.repeat_interleave(x_data, repeats, axis)
|
|
np.testing.assert_allclose(ref, outputs['output'])
|