TensorRT-LLMs/examples/blip2/README.md
2023-10-10 23:22:17 -07:00

104 lines
4.3 KiB
Markdown

# Guide to BLIP-2 pipeline
1. ViT and Qformer
- Generate ONNX model files for ViT and Qformer
```bash
python onnx_export.py
```
The exported ONNX files lies in `./onnx/visual_encoder` and `./onnx/Qformer`.
Moreover, it will save test image tensor to `image.pt` and visual query tokens to `query_tokens.pt` for later pipeline inference.
- Build TensorRT engines
```bash
python build_vit_qformer.py 0 # For ViT, FP16
python build_vit_qformer.py 1 # For Qformer, FP16
```
The built engines lie in `./plan/visual_encoder` and `./plan/Qformer`.
2. BLIP2 OPT-2.7B
- Download OPT-2.7B model checkpoint (same as original OPT-2.7B)
```bash
# OPT-2.7B
cd ../opt
git-lfs clone https://huggingface.co/facebook/opt-2.7b
```
- Convert original checkpoint to FT format (same as original OPT-2.7B)
```bash
# OPT-2.7B
python3 hf_opt_convert.py -i opt-2.7b -o c-model/opt-2.7b/fp16 -i_g 1 -weight_data_type fp16
```
- Build TRT-LLM engines from FT-format model (only need to add --max_prompt_embedding_table_size)
**NOTE:** `max_prompt_embedding_table_size = query_token_num * max_batch_size`, so if you changes the max_batch_size, prompt table size must be reset accordingly.
```bash
# OPT-2.7B
python build.py --model_dir=./c-model/opt-2.7b/fp16/1-gpu \
--max_batch_size 8 \
--dtype float16 \
--use_gpt_attention_plugin float16 \
--use_gemm_plugin float16 \
--use_layernorm_plugin float16 \
--max_input_len 924 \
--max_output_len 100 \
--max_beam_width 5 \
--world_size 1 \
--output_dir ../blip2/trt_engine/blip-2-opt-2.7b/fp16/1-gpu \
--do_layer_norm_before \
--pre_norm \
--hidden_act relu \
--max_prompt_embedding_table_size 256 # 256 = 32 (query_token number) * 8 (max_batch_size)
```
The built OPT engines lie in `./trt_engine/blip-2-opt-2.7b/fp16/1-gpu`.
**UPDATE[2023-09-21]**: We have newly added INT8/INT4 weight-only support for OPT. So you can enbale it using commands as follows (take `INT4` as an example, while `INT8` is the default precision for weight-only quantization):
```bash
# OPT-2.7B
python build.py --model_dir=./c-model/opt-2.7b/fp16/1-gpu \
--max_batch_size 8 \
--dtype float16 \
--use_gpt_attention_plugin float16 \
--use_gemm_plugin float16 \
--use_layernorm_plugin float16 \
--max_input_len 924 \
--max_output_len 100 \
--max_beam_width 5 \
--world_size 1 \
--output_dir ../blip2/trt_engine/blip-2-opt-2.7b/int4_weightonly/1-gpu \
--do_layer_norm_before \
--pre_norm \
--hidden_act relu \
--use_weight_only \
--weight_only_precision int4 \
--max_prompt_embedding_table_size 256 # 256 = 32 (query_token number) * 8 (max_batch_size)
```
The built OPT engines lie in `./trt_engine/blip-2-opt-2.7b/int4_weightonly/1-gpu`.
3. Assemble everything into BLIP-2 pipeline
FP16 pipeline
```bash
# BLIP OPT-2.7B
cd ../blip2
python run.py --num_beams 1 \
--max_txt_len 32 \
--max_output_len 30 \
--input_text "Question: which city is this? Answer:" \
--engine_dir ./plan \
--opt_engine_dir trt_engine/blip-2-opt-2.7b/fp16/1-gpu \
--input_dir image.pt \
--query_tokens query_tokens.pt
```
INT8/INT4 weight-only quantization pipeline
```bash
# BLIP OPT-2.7B
cd ../blip2
python run.py --num_beams 1 \
--max_txt_len 32 \
--max_output_len 30 \
--input_text "Question: which city is this? Answer:" \
--engine_dir ./plan \
--opt_engine_dir trt_engine/blip-2-opt-2.7b/int4_weightonly/1-gpu \
--input_dir image.pt \
--query_tokens query_tokens.pt
```