mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
127 lines
4.9 KiB
Python
127 lines
4.9 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from ..functional import ACT2FN
|
|
from ..module import Module
|
|
from ..quantization import QuantMode
|
|
from ..quantization.layers import FP8Linear, FP8RowLinear
|
|
from .linear import ColumnLinear, RowLinear
|
|
|
|
|
|
class MLP(Module):
|
|
|
|
def __init__(self,
|
|
hidden_size,
|
|
ffn_hidden_size,
|
|
hidden_act,
|
|
bias=True,
|
|
dtype=None,
|
|
tp_group=None,
|
|
tp_size=1,
|
|
quant_mode=QuantMode(0),
|
|
instance_id: int = 0):
|
|
super().__init__()
|
|
if hidden_act not in ACT2FN:
|
|
raise ValueError(
|
|
'unsupported activation function: {}'.format(hidden_act))
|
|
fc_output_size = 2 * ffn_hidden_size if hidden_act == 'swiglu' else ffn_hidden_size
|
|
self.use_fp8_qdq = quant_mode.has_fp8_qdq()
|
|
|
|
if self.use_fp8_qdq:
|
|
self.fc = FP8Linear(hidden_size,
|
|
fc_output_size,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
gather_output=False)
|
|
self.proj = FP8RowLinear(ffn_hidden_size,
|
|
hidden_size,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
instance_id=instance_id)
|
|
else:
|
|
self.fc = ColumnLinear(hidden_size,
|
|
fc_output_size,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
gather_output=False)
|
|
self.proj = RowLinear(ffn_hidden_size,
|
|
hidden_size,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
instance_id=instance_id)
|
|
self.hidden_act = hidden_act
|
|
self.dtype = dtype
|
|
|
|
def forward(self, hidden_states, workspace=None):
|
|
inter = self.fc(hidden_states)
|
|
inter = ACT2FN[self.hidden_act](inter)
|
|
output = self.proj(inter, workspace)
|
|
return output
|
|
|
|
|
|
class GatedMLP(MLP):
|
|
|
|
def __init__(self,
|
|
hidden_size,
|
|
ffn_hidden_size,
|
|
hidden_act,
|
|
bias=True,
|
|
dtype=None,
|
|
tp_group=None,
|
|
tp_size=1,
|
|
quant_mode=QuantMode(0),
|
|
instance_id: int = 0):
|
|
self.use_fp8_qdq = quant_mode.has_fp8_qdq()
|
|
super().__init__(hidden_size,
|
|
ffn_hidden_size,
|
|
hidden_act,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
quant_mode=quant_mode,
|
|
instance_id=instance_id)
|
|
|
|
if self.use_fp8_qdq:
|
|
self.gate = FP8Linear(hidden_size,
|
|
ffn_hidden_size,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
gather_output=False)
|
|
else:
|
|
self.gate = ColumnLinear(hidden_size,
|
|
ffn_hidden_size,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
tp_group=tp_group,
|
|
tp_size=tp_size,
|
|
gather_output=False)
|
|
|
|
def forward(self, hidden_states, workspace=None):
|
|
inter = self.fc(hidden_states)
|
|
inter = ACT2FN[self.hidden_act](inter)
|
|
gate = self.gate(hidden_states)
|
|
output = self.proj(inter * gate, workspace)
|
|
return output
|