mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
313 lines
11 KiB
Python
313 lines
11 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from collections import defaultdict
|
|
from typing import List
|
|
|
|
import torch
|
|
|
|
|
|
class Block(object):
|
|
|
|
def __init__(self, block_idx, k_ptrs, v_ptrs):
|
|
self.idx = block_idx
|
|
self.k_ptrs = k_ptrs
|
|
self.v_ptrs = v_ptrs
|
|
self.ref_count = 0
|
|
|
|
def add_link(self):
|
|
self.ref_count += 1
|
|
|
|
def remove_link(self):
|
|
self.ref_count -= 1
|
|
|
|
def has_link(self) -> bool:
|
|
return self.ref_count > 0
|
|
|
|
def get_k_ptr(self, idx) -> int:
|
|
return self.k_ptrs[idx]
|
|
|
|
def get_v_ptr(self, idx) -> int:
|
|
return self.v_ptrs[idx]
|
|
|
|
|
|
class GenerationSequence(object):
|
|
|
|
def __init__(self, seq_idx, batch_idx):
|
|
self.seq_idx = seq_idx
|
|
self.batch_idx = batch_idx
|
|
|
|
def get_batch_idx(self) -> int:
|
|
"""
|
|
Returns idx of sequence in batch
|
|
"""
|
|
return self.batch_idx
|
|
|
|
def get_seq_idx(self) -> int:
|
|
"""
|
|
Returns sequence idx
|
|
"""
|
|
return self.seq_idx
|
|
|
|
def __eq__(self, another):
|
|
return hasattr(another, 'seq_idx') and self.seq_idx == another.seq_idx and \
|
|
hasattr(another, 'batch_idx') and self.batch_idx == another.batch_idx
|
|
|
|
def __hash__(self):
|
|
return self.seq_idx
|
|
|
|
|
|
class BlocksManager(object):
|
|
_sizeof = {
|
|
torch.float32: 4,
|
|
torch.float16: 2,
|
|
torch.bfloat16: 2,
|
|
torch.int8: 1
|
|
}
|
|
|
|
def __init__(self,
|
|
memory_pools: List[torch.Tensor],
|
|
blocks: int,
|
|
max_blocks_per_seq: int = 128,
|
|
beam_width: int = 1):
|
|
self.max_blocks_per_seq = max_blocks_per_seq
|
|
|
|
self.pointer_array = None
|
|
self.memory_pools = memory_pools
|
|
self.blocks = blocks
|
|
self.beam_width = beam_width
|
|
|
|
self.elts_per_blocks = []
|
|
for pool in memory_pools:
|
|
# Pool consists of memory for K and V caches
|
|
self.elts_per_blocks.append(pool.nelement() // (2 * blocks))
|
|
|
|
self.free_blocks = []
|
|
for bi in range(blocks):
|
|
k_ptrs = []
|
|
v_ptrs = []
|
|
for pool, elts_per_block in zip(memory_pools, self.elts_per_blocks):
|
|
k_ptrs.append(self.get_mempool_pointer(bi, pool,
|
|
elts_per_block))
|
|
v_ptrs.append(
|
|
self.get_mempool_pointer(bi, pool, elts_per_block) +
|
|
self.blocks * elts_per_block * self._sizeof[pool.dtype])
|
|
self.free_blocks.append(Block(bi, k_ptrs, v_ptrs))
|
|
|
|
self.allocated_blocks = defaultdict(
|
|
lambda: [[] for _ in range(self.beam_width)])
|
|
|
|
def has_free_block(self) -> bool:
|
|
"""
|
|
Returns True if we have at least 1 free block
|
|
"""
|
|
return len(self.free_blocks) > 0
|
|
|
|
def allocate(self,
|
|
owner: GenerationSequence,
|
|
share_across_beam: bool = False):
|
|
"""
|
|
Add block to owner and increase ref count
|
|
"""
|
|
# Add blocks for whole beam width
|
|
block = None
|
|
for bi in range(self.beam_width):
|
|
if not self.has_free_block():
|
|
raise RuntimeError("Can't allocate new block for KV cache")
|
|
|
|
# Use the same block for all seqs in beam if share_across_beam
|
|
if block is None or share_across_beam == False:
|
|
block = self.free_blocks.pop(0)
|
|
# Add one reference to the block
|
|
block.add_link()
|
|
self.allocated_blocks[owner][bi].append(block)
|
|
|
|
def free(self, owner: GenerationSequence):
|
|
"""
|
|
Unlink all blocks of given owner.
|
|
Moves blocks with ref_count == 0 to free.
|
|
Removes owner from allocated blocks.
|
|
"""
|
|
for bi in range(self.beam_width):
|
|
for block in self.allocated_blocks[owner][bi]:
|
|
# Move block to free if no one refers to it
|
|
block.remove_link()
|
|
|
|
# Move block to free if no one refers to it
|
|
if not block.has_link():
|
|
self.free_blocks.append(block)
|
|
# Remove owner from allocated blocks
|
|
self.allocated_blocks.pop(owner)
|
|
|
|
def get_number_blocks(self, owner: GenerationSequence) -> int:
|
|
"""
|
|
Returns number of blocks allocated to the sequence owner
|
|
"""
|
|
return len(self.allocated_blocks[owner][0])
|
|
|
|
def get_mempool_pointer(self, block_idx: int, pool: torch.Tensor,
|
|
elts_per_block: int) -> int:
|
|
"""
|
|
Computes linear pointer
|
|
"""
|
|
return pool.data_ptr(
|
|
) + block_idx * elts_per_block * self._sizeof[pool.dtype]
|
|
|
|
def get_pointer_array(self, pool_idx: int, beam_width: int) -> torch.Tensor:
|
|
"""
|
|
Returns array of [batch size, beam_width, 2, max_blocks_per_seq] of poitners
|
|
to the allocated blocks in memory pool
|
|
"""
|
|
assert (beam_width <= self.beam_width)
|
|
|
|
def create_nested_list(dims):
|
|
"""Recursive function to generate nested list."""
|
|
if len(dims) == 1:
|
|
return [0 for _ in range(dims[0])]
|
|
return [create_nested_list(dims[1:]) for _ in range(dims[0])]
|
|
|
|
pointer_array = create_nested_list(
|
|
(len(self.allocated_blocks), beam_width, 2,
|
|
self.max_blocks_per_seq))
|
|
|
|
for owner, beams_blocks in self.allocated_blocks.items():
|
|
for bi in range(beam_width):
|
|
for block_linear_idx, block in enumerate(beams_blocks[bi]):
|
|
# K cache pointers
|
|
pointer_array[owner.get_batch_idx(
|
|
)][bi][0][block_linear_idx] = block.get_k_ptr(pool_idx)
|
|
# V cache pointers
|
|
pointer_array[owner.get_batch_idx(
|
|
)][bi][1][block_linear_idx] = block.get_v_ptr(pool_idx)
|
|
|
|
self.pointer_array = torch.tensor(pointer_array, dtype=torch.int64)
|
|
return self.pointer_array
|
|
|
|
def get_continous_caches(self, pool_idx: int) -> torch.Tensor:
|
|
"""
|
|
Returns countinous KV caches.
|
|
Used only for debug purposes.
|
|
"""
|
|
assert self.beam_width == 1
|
|
|
|
elts_per_block = self.elts_per_blocks[pool_idx]
|
|
pool = self.memory_pools[pool_idx].flatten()
|
|
continous_kv_cache = torch.zeros(len(self.allocated_blocks),
|
|
2,
|
|
self.max_blocks_per_seq *
|
|
elts_per_block,
|
|
dtype=pool.dtype,
|
|
device="cuda")
|
|
for owner, beam_blocks in self.allocated_blocks.items():
|
|
for bi in range(self.beam_width):
|
|
for block_linear_idx, block in enumerate(beam_blocks[bi]):
|
|
# The batch index.
|
|
batch_idx = owner.get_batch_idx()
|
|
# The first index in the sequence.
|
|
block_offset = block_linear_idx * elts_per_block
|
|
# The first index in the pool for K.
|
|
k_start = block.idx * elts_per_block
|
|
# The first index in the pool for V.
|
|
v_start = k_start + self.blocks * elts_per_block
|
|
|
|
continous_kv_cache[batch_idx][0][
|
|
block_offset:block_offset +
|
|
elts_per_block] = pool[k_start:k_start + elts_per_block]
|
|
continous_kv_cache[batch_idx][1][
|
|
block_offset:block_offset +
|
|
elts_per_block] = pool[v_start:v_start + elts_per_block]
|
|
|
|
return continous_kv_cache
|
|
|
|
|
|
class KVCacheManager(object):
|
|
|
|
def __init__(self,
|
|
memory_pools: List[torch.Tensor],
|
|
blocks: int,
|
|
tokens_per_block: int,
|
|
max_blocks_per_seq: int,
|
|
beam_width: int = 1):
|
|
|
|
self.blocks_manager = BlocksManager(
|
|
memory_pools=memory_pools,
|
|
blocks=blocks,
|
|
max_blocks_per_seq=max_blocks_per_seq,
|
|
beam_width=beam_width)
|
|
self.num_pools = len(memory_pools)
|
|
self.tokens_per_block = tokens_per_block
|
|
self.beam_width = beam_width
|
|
|
|
self.lens = []
|
|
self.sequences = []
|
|
|
|
def step(self, finished: List[bool]):
|
|
"""
|
|
Iterate to the next generation step.
|
|
Add new blocks where needed and clear finished sequences.
|
|
"""
|
|
for seq in self.sequences:
|
|
batch_idx = seq.get_batch_idx()
|
|
if not finished[batch_idx] and self.lens[
|
|
batch_idx] % self.tokens_per_block == self.tokens_per_block - 1:
|
|
self.blocks_manager.allocate(seq)
|
|
|
|
self.lens[batch_idx] += 1
|
|
|
|
# Remove finished sequences
|
|
for fi in range(len(finished)):
|
|
if finished[fi]:
|
|
self.blocks_manager.free(self.sequences[fi])
|
|
self.lens = [l for l, f in zip(self.lens, finished) if not f]
|
|
|
|
# Remap sequence ids
|
|
new_sequences = []
|
|
batch_idx = 0
|
|
for seq, finish in zip(self.sequences, finished):
|
|
if not finish:
|
|
seq.batch_idx = batch_idx
|
|
new_sequences.append(seq)
|
|
batch_idx += 1
|
|
self.sequences = new_sequences
|
|
|
|
def add_sequence(self, sequence: GenerationSequence, context_len: int):
|
|
"""
|
|
Add sequence to the manager and allocate minimum amount of blocks for context
|
|
"""
|
|
self.lens.append(context_len)
|
|
self.sequences.append(sequence)
|
|
|
|
# With beam_width > 1 we share context blocks between beams.
|
|
|
|
# First get number of blocks that can be shared across different beams.
|
|
# This is only possible for complete blocks -> round down.
|
|
context_blocks = context_len // self.tokens_per_block
|
|
for _ in range(context_blocks):
|
|
# Share context stage blocks within beam
|
|
self.blocks_manager.allocate(sequence, share_across_beam=True)
|
|
# Get one extra block for each beam. This is always one extra block
|
|
# because we need space for context_len + 1 tokens.
|
|
self.blocks_manager.allocate(sequence, share_across_beam=False)
|
|
|
|
def get_pointer_arrays(self, beam_width: int) -> List[torch.Tensor]:
|
|
"""
|
|
Returns arrays of pointers for all memory pools copied to GPU
|
|
"""
|
|
pointer_arrays = []
|
|
for pool in range(self.num_pools):
|
|
pointer_arrays.append(
|
|
self.blocks_manager.get_pointer_array(
|
|
pool, beam_width).to('cuda').view(dtype=torch.int64))
|
|
return pointer_arrays
|