mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
Signed-off-by: h-guo18 <67671475+h-guo18@users.noreply.github.com> Signed-off-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com> Co-authored-by: Lucas Liebenwein <11156568+lucaslie@users.noreply.github.com>
1.3 KiB
1.3 KiB
Incorporating auto_deploy into your own workflow
AutoDeploy can be seamlessly integrated into existing workflows using TRT-LLM's LLM high-level API. This section provides an example for configuring and invoking AutoDeploy in custom applications.
The following example demonstrates how to build an LLM object with AutoDeploy integration:
from tensorrt_llm._torch.auto_deploy import LLM
# Construct the LLM high-level interface object with autodeploy as backend
llm = LLM(
model=<HF_MODEL_CARD_OR_DIR>,
world_size=<DESIRED_WORLD_SIZE>,
compile_backend="torch-compile",
model_kwargs={"num_hidden_layers": 2}, # test with smaller model configuration
attn_backend="flashinfer", # choose between "triton" and "flashinfer"
attn_page_size=64, # page size for attention (tokens_per_block, should be == max_seq_len for triton)
skip_loading_weights=False,
model_factory="AutoModelForCausalLM", # choose appropriate model factory
free_mem_ratio=0.8, # fraction of available memory for cache
max_seq_len=<MAX_SEQ_LEN>,
max_batch_size=<MAX_BATCH_SIZE>,
)
For more information about configuring AutoDeploy via the LLM API using **kwargs, see the AutoDeploy LLM API in tensorrt_llm._torch.auto_deploy.llm and the AutoDeployConfig class in tensorrt_llm._torch.auto_deploy.llm_args.