6.6 KiB
TensorRT LLM Performance Test Flow (Default PyTorch Flow)
Overview
This document describes the complete TensorRT LLM performance testing workflow, particularly for the default PyTorch backend testing process for release testing.
1. Test Scripts
Main Test Script
The main script for TensorRT LLM performance testing is test_perf.py, which is responsible for executing all performance test cases.
Performance Metrics
For trtllm-bench, the test extracts the following key performance metrics from logs:
- BUILD_TIME: Model build time
- INFERENCE_TIME: Inference time
- TOKEN_THROUGHPUT: Token throughput
- SEQ_THROUGHPUT: Sequence throughput
- FIRST_TOKEN_TIME: First token generation time
- OUTPUT_TOKEN_TIME: Output token time
2. Detailed Test Flow
2.1 Dataset Preparation
Without LoRA
data_cmd += [
"trtllm-bench", f"--model={tokenizer_dir}",
"prepare-dataset", "--output", dataset_path, "token-norm-dist",
f"--num-requests={self._config.num_reqs}",
f"--input-mean={input_len}", f"--output-mean={output_len}",
f"--input-stdev={istdev}", f"--output-stdev={ostdev}"
]
With LoRA
"trtllm-bench", f"--model={tokenizer_dir}",
"prepare-dataset", "--output", dataset_path,
f"--rand-task-id 0 {nloras-1}",
f"--lora-dir={lora_dir}",
f"token-norm-dist",
f"--num-requests={self._config.num_reqs}",
f"--input-mean={input_len}", f"--output-mean={output_len}",
f"--input-stdev={istdev}", f"--output-stdev={ostdev}"
2.2 PyTorch Configuration Generation
In pytorch_model_config.py, we override PyTorch configurations for certain specific cases and generate YAML configuration files.
2.3 Calling trtllm-bench for Throughput Testing
Basic Command
benchmark_cmd = [
self._benchmark_script,
f"--model={model_name}",
f"--model_path={model_dir}",
"throughput",
f"--dataset={dataset_path}",
f"--max_batch_size={self._config.max_batch_size}",
f"--max_num_tokens={self._config.max_num_tokens}",
f"--report_json={report_path}",
]
Backend Selection
if self._config.backend != "pytorch":
benchmark_cmd += [
f"--backend=tensorrt", f"--engine_dir={engine_dir}"
]
else:
benchmark_cmd += ["--backend=pytorch"]
Optional Parameter Configuration
if self._config.num_reqs > 0:
benchmark_cmd += [f"--num_requests={self._config.num_reqs}"]
if self._config.concurrency != -1:
benchmark_cmd += [f"--concurrency={self._config.concurrency}"]
if self._config.ep_size != None:
benchmark_cmd += [f"--ep={self._config.ep_size}"]
if self._config.tp_size > 1:
benchmark_cmd += [f"--tp={self._config.tp_size}"]
if self._config.pp_size > 1:
benchmark_cmd += [f"--pp={self._config.pp_size}"]
if self._config.streaming == "streaming":
benchmark_cmd += [f"--streaming"]
PyTorch Default Configuration
# Use default YAML configuration
if self._config.backend == "pytorch":
import yaml
config = get_model_yaml_config(self._config.to_string(),
lora_dirs=self.lora_dirs)
print_info(f"pytorch model config: {config}")
with open('config.yml', 'w') as f:
yaml.dump(config, f, default_flow_style=False)
benchmark_cmd += [
f"--config=config.yml"
]
3. Test Scheduling
3.1 Full Test Cycles
- llm_perf_full.yml - Release performance test
- llm_perf_cluster.yml - Cluster performance test(for Blackwell)
- llm_perf_nim.yml - NIM performance test
3.2 Sanity Test Cycles
- llm_perf_sanity.yml - Release performance sanity test
4. Test Configuration Description
4.1 PyTorch Model Configuration
The default PyTorch configuration is defined in pytorch_model_config.py and can be overridden for specific test patterns. For example:
{
'patterns': [
'qwen3_235b_a22b_fp4-bench-pytorch-float4-maxbs:512-maxnt:2048-input_output_len:1000,2000-con:8-ep:8-gpus:8',
],
'config': {
'enable_attention_dp': False,
'moe_config': {
'backend': 'TRTLLM'
}
}
}
This configuration allows you to customize PyTorch-specific settings for different model patterns while maintaining the base configuration as a fallback.
4.1 Test Case Configuration
- Test cases are defined in YAML configuration files
- Support for different models, precisions, batch sizes, etc.
- Support for LoRA and standard model testing
4.2 Performance Baseline
- Compare regression of each release on internal TRT-Perf dashboard
4.3 Result Analysis
- Generates detailed performance reports
- Supports performance trend analysis
- View performance data and compare between different runs on internal TRT-Perf dashboard
5. Runtime Environment Requirements
5.1 Dependency Installation
pip install -r ./TensorRT-LLM/requirements.txt
pip install -r ./TensorRT-LLM/requirements-dev.txt
5.2 Hardware Requirements
- CUDA-capable GPU
- Sufficient GPU memory for model loading
- Recommended to use B200/GB200 or higher performance GPU for cluster testing
6. Reproduce Steps
To reproduce the performance tests locally, follow these steps:
6.1 Install Dependencies
pip install -r requirements-dev.txt
pip install -r requirements.txt
6.2 Navigate to Test Directory
cd tests/integration/defs
6.3 Add Test Case to Test List
echo "perf/test_perf.py::test_perf[llama_v3.3_70b_instruct_fp8-bench-pytorch-float8-input_output_len:128,128]" >> perf_test.txt
6.4 Run Performance Test
pytest -v -s --test-prefix=H100_80GB_HBM3 --test-list=perf_test.txt -R=llama_v3.3_70b_instruct_fp8-bench-pytorch-float8-input_output_len:128,128 --output-dir=./output --perf --perf-log-formats=csv -o junit_logging=out-err
6.5 Command Parameters Explanation
--test-prefix=H100_80GB_HBM3: Specifies the test environment prefix--test-list: Points to the test list file containing test cases-R: Filter for specific test patterns--output-dir=./output: Specifies the output directory for test results--perf: Enables performance testing mode--perf-log-formats=csv: Outputs performance logs in CSV format-o junit_logging=out-err: Configures JUnit logging output