TensorRT-LLMs/tests/integration/defs/perf/README_release_test.md

6.6 KiB

TensorRT LLM Performance Test Flow (Default PyTorch Flow)

Overview

This document describes the complete TensorRT LLM performance testing workflow, particularly for the default PyTorch backend testing process for release testing.

1. Test Scripts

Main Test Script

The main script for TensorRT LLM performance testing is test_perf.py, which is responsible for executing all performance test cases.

Performance Metrics

For trtllm-bench, the test extracts the following key performance metrics from logs:

  • BUILD_TIME: Model build time
  • INFERENCE_TIME: Inference time
  • TOKEN_THROUGHPUT: Token throughput
  • SEQ_THROUGHPUT: Sequence throughput
  • FIRST_TOKEN_TIME: First token generation time
  • OUTPUT_TOKEN_TIME: Output token time

2. Detailed Test Flow

2.1 Dataset Preparation

Without LoRA

data_cmd += [
    "trtllm-bench", f"--model={tokenizer_dir}",
        "prepare-dataset", "--output", dataset_path, "token-norm-dist",
        f"--num-requests={self._config.num_reqs}",
        f"--input-mean={input_len}", f"--output-mean={output_len}",
        f"--input-stdev={istdev}", f"--output-stdev={ostdev}"
]

With LoRA

"trtllm-bench", f"--model={tokenizer_dir}",
    "prepare-dataset", "--output", dataset_path,
    f"--rand-task-id 0 {nloras-1}",
    f"--lora-dir={lora_dir}",
    f"token-norm-dist",
    f"--num-requests={self._config.num_reqs}",
    f"--input-mean={input_len}", f"--output-mean={output_len}",
    f"--input-stdev={istdev}", f"--output-stdev={ostdev}"

2.2 PyTorch Configuration Generation

In pytorch_model_config.py, we override PyTorch configurations for certain specific cases and generate YAML configuration files.

2.3 Calling trtllm-bench for Throughput Testing

Basic Command

benchmark_cmd = [
    self._benchmark_script,
    f"--model={model_name}",
    f"--model_path={model_dir}",
    "throughput",
    f"--dataset={dataset_path}",
    f"--max_batch_size={self._config.max_batch_size}",
    f"--max_num_tokens={self._config.max_num_tokens}",
    f"--report_json={report_path}",
]

Backend Selection

if self._config.backend != "pytorch":
    benchmark_cmd += [
        f"--backend=tensorrt", f"--engine_dir={engine_dir}"
    ]
else:
    benchmark_cmd += ["--backend=pytorch"]

Optional Parameter Configuration

if self._config.num_reqs > 0:
    benchmark_cmd += [f"--num_requests={self._config.num_reqs}"]
if self._config.concurrency != -1:
    benchmark_cmd += [f"--concurrency={self._config.concurrency}"]
if self._config.ep_size != None:
    benchmark_cmd += [f"--ep={self._config.ep_size}"]
if self._config.tp_size > 1:
    benchmark_cmd += [f"--tp={self._config.tp_size}"]
if self._config.pp_size > 1:
    benchmark_cmd += [f"--pp={self._config.pp_size}"]
if self._config.streaming == "streaming":
    benchmark_cmd += [f"--streaming"]

PyTorch Default Configuration

# Use default YAML configuration
if self._config.backend == "pytorch":
    import yaml
    config = get_model_yaml_config(self._config.to_string(),
                                   lora_dirs=self.lora_dirs)
    print_info(f"pytorch model config: {config}")
    with open('config.yml', 'w') as f:
        yaml.dump(config, f, default_flow_style=False)
    benchmark_cmd += [
        f"--config=config.yml"
    ]

3. Test Scheduling

3.1 Full Test Cycles

  1. llm_perf_full.yml - Release performance test
  2. llm_perf_cluster.yml - Cluster performance test(for Blackwell)
  3. llm_perf_nim.yml - NIM performance test

3.2 Sanity Test Cycles

4. Test Configuration Description

4.1 PyTorch Model Configuration

The default PyTorch configuration is defined in pytorch_model_config.py and can be overridden for specific test patterns. For example:

{
    'patterns': [
        'qwen3_235b_a22b_fp4-bench-pytorch-float4-maxbs:512-maxnt:2048-input_output_len:1000,2000-con:8-ep:8-gpus:8',
    ],
    'config': {
        'enable_attention_dp': False,
        'moe_config': {
            'backend': 'TRTLLM'
        }
    }
}

This configuration allows you to customize PyTorch-specific settings for different model patterns while maintaining the base configuration as a fallback.

4.1 Test Case Configuration

  • Test cases are defined in YAML configuration files
  • Support for different models, precisions, batch sizes, etc.
  • Support for LoRA and standard model testing

4.2 Performance Baseline

  • Compare regression of each release on internal TRT-Perf dashboard

4.3 Result Analysis

  • Generates detailed performance reports
  • Supports performance trend analysis
  • View performance data and compare between different runs on internal TRT-Perf dashboard

5. Runtime Environment Requirements

5.1 Dependency Installation

pip install -r ./TensorRT-LLM/requirements.txt
pip install -r ./TensorRT-LLM/requirements-dev.txt

5.2 Hardware Requirements

  • CUDA-capable GPU
  • Sufficient GPU memory for model loading
  • Recommended to use B200/GB200 or higher performance GPU for cluster testing

6. Reproduce Steps

To reproduce the performance tests locally, follow these steps:

6.1 Install Dependencies

pip install -r requirements-dev.txt
pip install -r requirements.txt

6.2 Navigate to Test Directory

cd tests/integration/defs

6.3 Add Test Case to Test List

echo "perf/test_perf.py::test_perf[llama_v3.3_70b_instruct_fp8-bench-pytorch-float8-input_output_len:128,128]" >> perf_test.txt

6.4 Run Performance Test

pytest -v -s --test-prefix=H100_80GB_HBM3 --test-list=perf_test.txt -R=llama_v3.3_70b_instruct_fp8-bench-pytorch-float8-input_output_len:128,128 --output-dir=./output --perf --perf-log-formats=csv -o junit_logging=out-err

6.5 Command Parameters Explanation

  • --test-prefix=H100_80GB_HBM3: Specifies the test environment prefix
  • --test-list: Points to the test list file containing test cases
  • -R: Filter for specific test patterns
  • --output-dir=./output: Specifies the output directory for test results
  • --perf: Enables performance testing mode
  • --perf-log-formats=csv: Outputs performance logs in CSV format
  • -o junit_logging=out-err: Configures JUnit logging output