mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-25 13:12:45 +08:00
150 lines
5.8 KiB
Python
150 lines
5.8 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
|
|
import pytest
|
|
from defs.common import convert_weights, venv_mpi_check_call
|
|
from defs.trt_test_alternative import check_call
|
|
|
|
|
|
@pytest.mark.skip_less_device(8)
|
|
@pytest.mark.skip_less_device_memory(80000)
|
|
@pytest.mark.skip_less_host_memory(1000000)
|
|
@pytest.mark.parametrize(
|
|
"tp_pp_size", [(8, 1), (4, 2)],
|
|
ids=lambda tp_pp_size: f'tp{tp_pp_size[0]}pp{tp_pp_size[1]}')
|
|
@pytest.mark.parametrize("dtype", ["float16", "bfloat16"])
|
|
@pytest.mark.parametrize("llm_dbrx_model_root", ["dbrx-base", "dbrx-instruct"],
|
|
indirect=True)
|
|
def test_llm_dbrx_8gpus(dbrx_example_root, llm_dbrx_model_root,
|
|
llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir,
|
|
engine_dir, dtype, tp_pp_size):
|
|
"Build & run dbrx with 8 gpus"
|
|
print("Converting checkpoint...")
|
|
tp_size, pp_size = tp_pp_size
|
|
world_size = tp_size * pp_size
|
|
model_name = os.path.basename(llm_dbrx_model_root)
|
|
ckpt_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=dbrx_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
model_path=llm_dbrx_model_root,
|
|
data_type=dtype,
|
|
gpus=world_size,
|
|
tp_size=tp_size,
|
|
pp_size=pp_size,
|
|
workers=world_size)
|
|
|
|
print("Building engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={ckpt_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
"--max_batch_size=8",
|
|
"--max_input_len=924",
|
|
"--max_seq_len=1024",
|
|
f"--gpt_attention_plugin={dtype}",
|
|
f"--gemm_plugin={dtype}",
|
|
f"--moe_plugin={dtype}",
|
|
f"--workers={world_size}",
|
|
]
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run engines...")
|
|
summary_cmd = [
|
|
f"{dbrx_example_root}/../summarize.py", "--test_trt_llm",
|
|
f"--engine_dir={engine_dir}", f"--hf_model_dir={llm_dbrx_model_root}",
|
|
"--batch_size=8", "--max_ite=40", "--check_accuracy",
|
|
"--tensorrt_llm_rouge1_threshold=22",
|
|
f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}"
|
|
]
|
|
venv_mpi_check_call(
|
|
llm_venv, ["mpirun", "-n", f"{world_size}", "--allow-run-as-root"],
|
|
summary_cmd)
|
|
|
|
|
|
@pytest.mark.skip_less_device(4)
|
|
@pytest.mark.skip_less_device_memory(80000)
|
|
@pytest.mark.skip_less_host_memory(1000000)
|
|
@pytest.mark.parametrize("test_case", ["int8_wo", "int4_wo", "int8_kv"])
|
|
@pytest.mark.parametrize("llm_dbrx_model_root", ["dbrx-base", "dbrx-instruct"],
|
|
indirect=True)
|
|
def test_llm_dbrx_quantization_4gpus(dbrx_example_root, llm_dbrx_model_root,
|
|
llm_datasets_root, llm_rouge_root,
|
|
llm_venv, cmodel_dir, engine_dir,
|
|
test_case):
|
|
"Build & run dbrx with 4 gpus"
|
|
print("Converting checkpoint...")
|
|
dtype = 'float16'
|
|
tp_size, pp_size = 4, 1
|
|
world_size = tp_size * pp_size
|
|
model_name = os.path.basename(llm_dbrx_model_root)
|
|
|
|
if test_case == "int8_wo":
|
|
convert_kwargs = {
|
|
'use_weight_only': True,
|
|
'weight_only_precision': 'int8'
|
|
}
|
|
elif test_case == "int4_wo":
|
|
convert_kwargs = {
|
|
'use_weight_only': True,
|
|
'weight_only_precision': 'int4'
|
|
}
|
|
elif test_case == "int8_kv":
|
|
convert_kwargs = {
|
|
"int8_kv_cache": True,
|
|
'calib_dataset': f"{llm_datasets_root}/ccdv/cnn_dailymail"
|
|
}
|
|
ckpt_dir = convert_weights(llm_venv=llm_venv,
|
|
example_root=dbrx_example_root,
|
|
cmodel_dir=cmodel_dir,
|
|
model=model_name,
|
|
model_path=llm_dbrx_model_root,
|
|
data_type=dtype,
|
|
gpus=world_size,
|
|
tp_size=tp_size,
|
|
pp_size=pp_size,
|
|
workers=world_size,
|
|
**convert_kwargs)
|
|
|
|
print("Building engines...")
|
|
build_cmd = [
|
|
"trtllm-build",
|
|
f"--checkpoint_dir={ckpt_dir}",
|
|
f"--output_dir={engine_dir}",
|
|
"--max_batch_size=8",
|
|
"--max_input_len=924",
|
|
"--max_seq_len=1024",
|
|
f"--gpt_attention_plugin={dtype}",
|
|
f"--gemm_plugin={dtype}",
|
|
f"--moe_plugin={dtype}",
|
|
f"--workers={world_size}",
|
|
]
|
|
|
|
check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env)
|
|
|
|
print("Run engines...")
|
|
summary_cmd = [
|
|
f"{dbrx_example_root}/../summarize.py", "--test_trt_llm",
|
|
f"--engine_dir={engine_dir}", f"--hf_model_dir={llm_dbrx_model_root}",
|
|
"--batch_size=8", "--max_ite=40", "--check_accuracy",
|
|
"--tensorrt_llm_rouge1_threshold=20",
|
|
f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}"
|
|
]
|
|
venv_mpi_check_call(
|
|
llm_venv, ["mpirun", "-n", f"{world_size}", "--allow-run-as-root"],
|
|
summary_cmd)
|