llms-from-scratch-cn/Model_Architecture_Discussions/llama3/README.md
2024-05-27 15:17:00 +08:00

45 KiB
Raw Blame History

从头开始实现llama3

在这个文件中我逐个张量和矩阵地从头实现了llama3。 本地可以运行llama3-from-scratch.ipynb
此外我将直接从meta提供给llama3的模型文件中加载张量你需要在运行此文件之前下载权重。 这是下载权重的官方链接: 点击这里下载权重

https://hf-mirror.com/NousResearch/Meta-Llama-3-8B https://gitee.com/hf-models/Meta-Llama-3-8B-Instruct/ ## 分词器 我不打算实现一个BPE分词器但是Andrej Karpathy有一个非常干净的实现
他的实现链接: [点击这里查看他的实现](https://github.com/karpathy/minbpe)
%env HF_ENDPOINT = "https://hf-mirror.com"
env: HF_ENDPOINT="https://hf-mirror.com"
%pip install blobfile -q
Note: you may need to restart the kernel to use updated packages.
from pathlib import Path
import tiktoken
from tiktoken.load import load_tiktoken_bpe
import torch
import json
import matplotlib.pyplot as plt

tokenizer_path = "./tokenizer.model"
special_tokens = [
            "<|begin_of_text|>",
            "<|end_of_text|>",
            "<|reserved_special_token_0|>",
            "<|reserved_special_token_1|>",
            "<|reserved_special_token_2|>",
            "<|reserved_special_token_3|>",
            "<|start_header_id|>",
            "<|end_header_id|>",
            "<|reserved_special_token_4|>",
            "<|eot_id|>",  # end of turn
        ] + [f"<|reserved_special_token_{i}|>" for i in range(5, 256 - 5)]
mergeable_ranks = load_tiktoken_bpe(tokenizer_path)
tokenizer = tiktoken.Encoding(
    name=Path(tokenizer_path).name,
    pat_str=r"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+",
    mergeable_ranks=mergeable_ranks,
    special_tokens={token: len(mergeable_ranks) + i for i, token in enumerate(special_tokens)},
)

tokenizer.decode(tokenizer.encode("hello world!"))
'hello world!'

读取模型文件

通常,读取模型文件取决于模型类的编写方式以及其中的变量名。
但由于我们是从头开始实现llama3我们将逐个张量地读取文件。

可以在这里下载模型:https://gitee.com/hf-models/Meta-Llama-3-8B-Instruct/blob/main/original/consolidated.00.pth

!wget 'https://lfs.gitee.com/api/lfs/storage/projects/34266234/be52262c9289304f3e8240e0749bf257bc04264405a86cd4de38efb9068724ee?Expires=1716626632&Signature=xgDOu9JHNM6ECazR3nA4NQHwXs%2BiG%2BCtnzza6ekSuqs%3D&FileName=consolidated.00.pth'
--2024-05-25 16:24:15--  https://lfs.gitee.com/api/lfs/storage/projects/34266234/be52262c9289304f3e8240e0749bf257bc04264405a86cd4de38efb9068724ee?Expires=1716626632&Signature=xgDOu9JHNM6ECazR3nA4NQHwXs%2BiG%2BCtnzza6ekSuqs%3D&FileName=consolidated.00.pth
Resolving lfs.gitee.com (lfs.gitee.com)... 180.76.198.180
Connecting to lfs.gitee.com (lfs.gitee.com)|180.76.198.180|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 16060617592 (15G) [application/octet-stream]
Saving to: be52262c9289304f3e8240e0749bf257bc04264405a86cd4de38efb9068724ee?Expires=1716626632&Signature=xgDOu9JHNM6ECazR3nA4NQHwXs+iG+Ctnzza6ekSuqs=&FileName=consolidated.00.pth

 0% [                                       ] 105,193,134  453KB/s  eta 11h 21m^C

我的机器12s可以载入接下来仅用cpu进行推理我这边内存30G足够了然后cpu推理一个词大约30s稍微慢了一些不过我们主要理解原理

model = torch.load("/data1/ckw/consolidated.00.pth")
print(json.dumps(list(model.keys())[:20], indent=4))
[
    "tok_embeddings.weight",
    "layers.0.attention.wq.weight",
    "layers.0.attention.wk.weight",
    "layers.0.attention.wv.weight",
    "layers.0.attention.wo.weight",
    "layers.0.feed_forward.w1.weight",
    "layers.0.feed_forward.w3.weight",
    "layers.0.feed_forward.w2.weight",
    "layers.0.attention_norm.weight",
    "layers.0.ffn_norm.weight",
    "layers.1.attention.wq.weight",
    "layers.1.attention.wk.weight",
    "layers.1.attention.wv.weight",
    "layers.1.attention.wo.weight",
    "layers.1.feed_forward.w1.weight",
    "layers.1.feed_forward.w3.weight",
    "layers.1.feed_forward.w2.weight",
    "layers.1.attention_norm.weight",
    "layers.1.ffn_norm.weight",
    "layers.2.attention.wq.weight"
]
with open("./params.json", "r") as f:
    config = json.load(f)
config
{'dim': 4096,
 'n_layers': 32,
 'n_heads': 32,
 'n_kv_heads': 8,
 'vocab_size': 128256,
 'multiple_of': 1024,
 'ffn_dim_multiplier': 1.3,
 'norm_eps': 1e-05,
 'rope_theta': 500000.0}

我们使用这个配置来推断模型的细节,比如:

  1. 模型有32个Transformer层
  2. 每个多头注意力块有32个头
  3. 词汇表大小,等等
dim = config["dim"]
n_layers = config["n_layers"]
n_heads = config["n_heads"]
n_kv_heads = config["n_kv_heads"]
vocab_size = config["vocab_size"]
multiple_of = config["multiple_of"]
ffn_dim_multiplier = config["ffn_dim_multiplier"]
norm_eps = config["norm_eps"]
rope_theta = torch.tensor(config["rope_theta"])

将文本转换为标记

这里我们使用tiktoken我认为是OpenAI的一个库作为分词器

prompt = "the answer to the ultimate question of life, the universe, and everything is "
tokens = [128000] + tokenizer.encode(prompt)
print(tokens)
tokens = torch.tensor(tokens)
prompt_split_as_tokens = [tokenizer.decode([token.item()]) for token in tokens]
print(prompt_split_as_tokens)
[128000, 1820, 4320, 311, 279, 17139, 3488, 315, 2324, 11, 279, 15861, 11, 323, 4395, 374, 220]
['<|begin_of_text|>', 'the', ' answer', ' to', ' the', ' ultimate', ' question', ' of', ' life', ',', ' the', ' universe', ',', ' and', ' everything', ' is', ' ']

将标记转换为它们的嵌入向量

这是代码库中我唯一使用内置神经网络模块的部分。
无论如何,我们的[17x1]标记现在是[17x4096]即长度为4096的17个嵌入向量每个标记一个

注意: 跟踪形状,这样可以更容易理解所有内容

embedding_layer = torch.nn.Embedding(vocab_size, dim)
embedding_layer.weight.data.copy_(model["tok_embeddings.weight"])
token_embeddings_unnormalized = embedding_layer(tokens).to(torch.bfloat16)
token_embeddings_unnormalized.shape
torch.Size([17, 4096])

然后我们使用RMS归一化来标准化嵌入向量

请注意,在此步骤之后,形状不会改变,只是值被标准化了。
需要记住的一些事情我们需要一个norm_eps来自配置因为我们不希望意外地将RMS设置为0并除以0。
以下是公式:

# def rms_norm(tensor, norm_weights):
#     rms = (tensor.pow(2).mean(-1, keepdim=True) + norm_eps)**0.5
#     return tensor * (norm_weights / rms)
def rms_norm(tensor, norm_weights):
    return (tensor * torch.rsqrt(tensor.pow(2).mean(-1, keepdim=True) + norm_eps)) * norm_weights

构建Transformer的第一层

标准化

你会看到我从模型字典中访问layer.0(这是第一层)。
无论如何,所以在我们标准化后,形状仍然是[17x4096],与嵌入向量相同,但是标准化了

token_embeddings = rms_norm(token_embeddings_unnormalized, model["layers.0.attention_norm.weight"])
token_embeddings.shape
torch.Size([17, 4096])

从头实现的注意力机制

让我们加载Transformer第一层的注意力头


> 当我们从模型中加载查询query、键key、值value和输出output向量时我们注意到它们的形状为[4096x4096]、[1024x4096]、[1024x4096]、[4096x4096]
> 乍一看这有点奇怪因为理想情况下我们希望每个注意力头的q、k、v和o都是分开的
> 代码的作者将它们捆绑在一起,因为这样做容易并行化注意力头的乘法。
> 我要将所有东西解开...

print(
    model["layers.0.attention.wq.weight"].shape,
    model["layers.0.attention.wk.weight"].shape,
    model["layers.0.attention.wv.weight"].shape,
    model["layers.0.attention.wo.weight"].shape
)
torch.Size([4096, 4096]) torch.Size([1024, 4096]) torch.Size([1024, 4096]) torch.Size([4096, 4096])

解开查询

在下一节中,我们将从多个注意力头中解开查询,结果形状为[32x128x4096]

这里32是llama3中的注意力头数量128是查询向量的大小4096是标记嵌入的大小

q_layer0 = model["layers.0.attention.wq.weight"]
head_dim = q_layer0.shape[0] // n_heads
q_layer0 = q_layer0.view(n_heads, head_dim, dim)
q_layer0.shape
torch.Size([32, 128, 4096])

我要实现第一层的第一个注意力头

在这里,我首先访问第一层的第一个注意力头的查询权重矩阵,该查询权重矩阵的大小为[128x4096]

q_layer0_head0 = q_layer0[0]
q_layer0_head0.shape
torch.Size([128, 4096])

现在我们将查询权重与标记嵌入相乘,以获得每个标记的查询

在这里,你可以看到结果的形状为[17x128]这是因为我们有17个标记对于每个标记都有一个长度为128的查询。

q_per_token = torch.matmul(token_embeddings, q_layer0_head0.T)
q_per_token.shape
torch.Size([17, 128])

位置编码

现在我们处于这样一个阶段:我们在我们的提示中为每个标记都有一个查询向量,但是如果你想一想--每个单独的查询向量并不知道在提示中的位置。

查询:"生命、宇宙和一切的终极问题的答案是"

在我们的提示中,我们使用了"the"三次我们需要所有3个"the"标记的查询向量都根据它们在查询中的位置有不同的查询向量(每个大小为[1x128]。我们使用RoPE旋转位置编码来执行这些旋转。

RoPE

观看这个视频(这是我看的)以理解数学原理。 点击这里观看视频

q_per_token_split_into_pairs = q_per_token.float().view(q_per_token.shape[0], -1, 2)
q_per_token_split_into_pairs.shape
torch.Size([17, 64, 2])

在上述步骤中,我们将查询向量分成一对对,对每对应用旋转角度偏移!

现在我们有一个大小为[17x64x2]的向量这是128长度的查询分成64对对于提示中的每个标记每个这样的64对将通过m*(theta)进行旋转其中m是我们正在旋转查询的标记的位置

使用复数的点积来旋转向量

zero_to_one_split_into_64_parts = torch.tensor(range(64))/64
zero_to_one_split_into_64_parts
tensor([0.0000, 0.0156, 0.0312, 0.0469, 0.0625, 0.0781, 0.0938, 0.1094, 0.1250,
        0.1406, 0.1562, 0.1719, 0.1875, 0.2031, 0.2188, 0.2344, 0.2500, 0.2656,
        0.2812, 0.2969, 0.3125, 0.3281, 0.3438, 0.3594, 0.3750, 0.3906, 0.4062,
        0.4219, 0.4375, 0.4531, 0.4688, 0.4844, 0.5000, 0.5156, 0.5312, 0.5469,
        0.5625, 0.5781, 0.5938, 0.6094, 0.6250, 0.6406, 0.6562, 0.6719, 0.6875,
        0.7031, 0.7188, 0.7344, 0.7500, 0.7656, 0.7812, 0.7969, 0.8125, 0.8281,
        0.8438, 0.8594, 0.8750, 0.8906, 0.9062, 0.9219, 0.9375, 0.9531, 0.9688,
        0.9844])
freqs = 1.0 / (rope_theta ** zero_to_one_split_into_64_parts)
freqs
tensor([1.0000e+00, 8.1462e-01, 6.6360e-01, 5.4058e-01, 4.4037e-01, 3.5873e-01,
        2.9223e-01, 2.3805e-01, 1.9392e-01, 1.5797e-01, 1.2869e-01, 1.0483e-01,
        8.5397e-02, 6.9566e-02, 5.6670e-02, 4.6164e-02, 3.7606e-02, 3.0635e-02,
        2.4955e-02, 2.0329e-02, 1.6560e-02, 1.3490e-02, 1.0990e-02, 8.9523e-03,
        7.2927e-03, 5.9407e-03, 4.8394e-03, 3.9423e-03, 3.2114e-03, 2.6161e-03,
        2.1311e-03, 1.7360e-03, 1.4142e-03, 1.1520e-03, 9.3847e-04, 7.6450e-04,
        6.2277e-04, 5.0732e-04, 4.1327e-04, 3.3666e-04, 2.7425e-04, 2.2341e-04,
        1.8199e-04, 1.4825e-04, 1.2077e-04, 9.8381e-05, 8.0143e-05, 6.5286e-05,
        5.3183e-05, 4.3324e-05, 3.5292e-05, 2.8750e-05, 2.3420e-05, 1.9078e-05,
        1.5542e-05, 1.2660e-05, 1.0313e-05, 8.4015e-06, 6.8440e-06, 5.5752e-06,
        4.5417e-06, 3.6997e-06, 3.0139e-06, 2.4551e-06])
plt.rcParams['axes.unicode_minus'] = False		# 显示负号
plt.rcParams["font.sans-serif"]=['simhei']
freqs_for_each_token = torch.outer(torch.arange(17), freqs)
freqs_cis = torch.polar(torch.ones_like(freqs_for_each_token), freqs_for_each_token)
freqs_cis.shape

# 查看freqs_cis的第三行
value = freqs_cis[3]
plt.figure()
for i, element in enumerate(value[:17]):
    plt.plot([0, element.real], [0, element.imag], color='blue', linewidth=1, label=f"Index: {i}")
    plt.annotate(f"{i}", xy=(element.real, element.imag), color='red')
plt.xlabel('实部')
plt.ylabel('虚部')
plt.title('freqs_cis的一行的图示')
plt.show()

png

现在我们为每个标记的查询元素有了一个复数(角度变化向量)

我们可以将我们的查询(我们分成对的那些)转换为复数,然后进行点积来根据位置旋转查询
说实话,这样想真的很美 :)

q_per_token_as_complex_numbers = torch.view_as_complex(q_per_token_split_into_pairs)
q_per_token_as_complex_numbers.shape
torch.Size([17, 64])
q_per_token_as_complex_numbers_rotated = q_per_token_as_complex_numbers * freqs_cis
q_per_token_as_complex_numbers_rotated.shape
torch.Size([17, 64])

在获得旋转向量后

我们可以通过将复数视为实数来重新获取我们的查询对

q_per_token_split_into_pairs_rotated = torch.view_as_real(q_per_token_as_complex_numbers_rotated)
q_per_token_split_into_pairs_rotated.shape
torch.Size([17, 64, 2])

旋转后的查询对现已合并,我们现在有一个新的查询向量(旋转后的查询向量),其形状为[17x128]其中17表示标记数量128表示查询向量的维度。

q_per_token_rotated = q_per_token_split_into_pairs_rotated.view(q_per_token.shape)
q_per_token_rotated.shape
torch.Size([17, 128])

键(几乎与查询相同)

我太懒了,所以我不打算为键做数学推导,你需要记住的几点是:
> 键生成的键向量也是128维的
> 键的权重数量只有查询的四分之一这是因为键的权重在4个头中共享以减少计算量
> 键也会旋转以添加位置信息,与查询一样,因为同样的原因
k_layer0 = model["layers.0.attention.wk.weight"]
k_layer0 = k_layer0.view(n_kv_heads, k_layer0.shape[0] // n_kv_heads, dim)
k_layer0.shape
torch.Size([8, 128, 4096])
k_layer0_head0 = k_layer0[0]
k_layer0_head0.shape
torch.Size([128, 4096])
k_per_token = torch.matmul(token_embeddings, k_layer0_head0.T)
k_per_token.shape
torch.Size([17, 128])
k_per_token_split_into_pairs = k_per_token.float().view(k_per_token.shape[0], -1, 2)
k_per_token_split_into_pairs.shape
torch.Size([17, 64, 2])
k_per_token_as_complex_numbers = torch.view_as_complex(k_per_token_split_into_pairs)
k_per_token_as_complex_numbers.shape
torch.Size([17, 64])
k_per_token_split_into_pairs_rotated = torch.view_as_real(k_per_token_as_complex_numbers * freqs_cis)
k_per_token_split_into_pairs_rotated.shape
torch.Size([17, 64, 2])
k_per_token_rotated = k_per_token_split_into_pairs_rotated.view(k_per_token.shape)
k_per_token_rotated.shape
torch.Size([17, 128])

在这个阶段,我们现在对于每个标记都有了旋转后的查询和键的值。

每个查询和键现在的形状都是[17x128]。

下一步我们将对查询和键矩阵进行相乘

这样做将为我们提供一个将每个标记相互映射的分数
这个分数描述了每个标记的查询与每个标记的键之间的关系。 这就是自注意力机制 :)
注意力分数矩阵的形状qk_per_token是[17x17]其中17是提示中的标记数量

qk_per_token = torch.matmul(q_per_token_rotated, k_per_token_rotated.T)/(head_dim)**0.5
qk_per_token.shape
torch.Size([17, 17])

现在我们需要对查询键分数进行掩码处理

在llama3的训练过程中未来标记的查询键分数是被掩码的。
为什么?因为在训练过程中,我们只学习使用过去的标记来预测标记。
因此,在推理过程中,我们将未来的标记分数设置为零。

def display_qk_heatmap(qk_per_token):
    fig, ax = plt.subplots(figsize=(30, 8))  # 设置图像大小为12x8英寸
    im = ax.imshow(qk_per_token.to(float).detach(), cmap='viridis')
    ax.set_xticks(range(len(prompt_split_as_tokens)))
    ax.set_yticks(range(len(prompt_split_as_tokens)))
    ax.set_xticklabels(prompt_split_as_tokens)
    ax.set_yticklabels(prompt_split_as_tokens)
    ax.figure.colorbar(im, ax=ax)

display_qk_heatmap(qk_per_token)

png

mask = torch.full((len(tokens), len(tokens)), float("-inf"), device=tokens.device)
mask = torch.triu(mask, diagonal=1)
mask
tensor([[0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
        [0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
        [0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
        [0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
        [0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
        [0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
        [0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
        [0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
        [0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],
        [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf],
        [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf],
        [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf],
        [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf],
        [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf],
        [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf],
        [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf],
        [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
qk_per_token_after_masking = qk_per_token + mask
display_qk_heatmap(qk_per_token_after_masking)

png

qk_per_token_after_masking_after_softmax = torch.nn.functional.softmax(qk_per_token_after_masking, dim=1).to(torch.bfloat16)
display_qk_heatmap(qk_per_token_after_masking_after_softmax)

png

值(注意力机制的最后一步)

这些分数0-1用于确定每个标记使用多少值矩阵
> 就像键一样值的权重也在每4个注意力头中共享以节省计算
> 因此,下面值权重矩阵的形状是[8x128x4096]
v_layer0 = model["layers.0.attention.wv.weight"]
v_layer0 = v_layer0.view(n_kv_heads, v_layer0.shape[0] // n_kv_heads, dim)
v_layer0.shape
torch.Size([8, 128, 4096])

第一层,第一个注意力头的值权重矩阵如下所示:

v_layer0_head0 = v_layer0[0]
v_layer0_head0.shape
torch.Size([128, 4096])

值向量

我们现在使用值权重来获取每个标记的注意力值,其大小为[17x128]其中17是提示中的标记数量128是每个标记的值向量维度。
v_per_token = torch.matmul(token_embeddings, v_layer0_head0.T)
v_per_token.shape
torch.Size([17, 128])

注意力机制

与每个标记的值相乘后得到的注意力向量的形状为[17x128]。
qkv_attention = torch.matmul(qk_per_token_after_masking_after_softmax, v_per_token)
qkv_attention.shape
torch.Size([17, 128])

多头注意力机制

我们现在得到了第一层和第一个头的注意力值
接下来,我将运行一个循环,为第一层的每个头执行与上面相同的数学计算。
qkv_attention_store = []

for head in range(n_heads):
    q_layer0_head = q_layer0[head]
    k_layer0_head = k_layer0[head//4] # key weights are shared across 4 heads
    v_layer0_head = v_layer0[head//4] # value weights are shared across 4 heads
    q_per_token = torch.matmul(token_embeddings, q_layer0_head.T)
    k_per_token = torch.matmul(token_embeddings, k_layer0_head.T)
    v_per_token = torch.matmul(token_embeddings, v_layer0_head.T)

    q_per_token_split_into_pairs = q_per_token.float().view(q_per_token.shape[0], -1, 2)
    q_per_token_as_complex_numbers = torch.view_as_complex(q_per_token_split_into_pairs)
    q_per_token_split_into_pairs_rotated = torch.view_as_real(q_per_token_as_complex_numbers * freqs_cis[:len(tokens)])
    q_per_token_rotated = q_per_token_split_into_pairs_rotated.view(q_per_token.shape)

    k_per_token_split_into_pairs = k_per_token.float().view(k_per_token.shape[0], -1, 2)
    k_per_token_as_complex_numbers = torch.view_as_complex(k_per_token_split_into_pairs)
    k_per_token_split_into_pairs_rotated = torch.view_as_real(k_per_token_as_complex_numbers * freqs_cis[:len(tokens)])
    k_per_token_rotated = k_per_token_split_into_pairs_rotated.view(k_per_token.shape)

    qk_per_token = torch.matmul(q_per_token_rotated, k_per_token_rotated.T)/(128)**0.5
    mask = torch.full((len(tokens), len(tokens)), float("-inf"), device=tokens.device)
    mask = torch.triu(mask, diagonal=1)
    qk_per_token_after_masking = qk_per_token + mask
    qk_per_token_after_masking_after_softmax = torch.nn.functional.softmax(qk_per_token_after_masking, dim=1).to(torch.bfloat16)
    qkv_attention = torch.matmul(qk_per_token_after_masking_after_softmax, v_per_token)
    qkv_attention = torch.matmul(qk_per_token_after_masking_after_softmax, v_per_token)
    qkv_attention_store.append(qkv_attention)

len(qkv_attention_store)
32
我们现在得到了第一层上所有32个头的qkv_attention矩阵接下来我将把所有注意力得分合并成一个大小为[17x4096]的大矩阵。
我们快要完成了 :)
stacked_qkv_attention = torch.cat(qkv_attention_store, dim=-1)
stacked_qkv_attention.shape
torch.Size([17, 4096])

权重矩阵,最后的步骤之一

对于第0层注意力机制最后要做的一件事是将注意力值与权重矩阵相乘。
w_layer0 = model["layers.0.attention.wo.weight"]
w_layer0.shape
torch.Size([4096, 4096])

这是一个简单的线性层,所以我们只需要进行矩阵乘法

embedding_delta = torch.matmul(stacked_qkv_attention, w_layer0.T)
embedding_delta.shape
torch.Size([17, 4096])
我们现在得到了注意力机制后的嵌入值变化,这个变化应当加到原始的标记嵌入上。
embedding_after_edit = token_embeddings_unnormalized + embedding_delta
embedding_after_edit.shape
torch.Size([17, 4096])

我们对嵌入增量进行归一化,然后通过一个前馈神经网络进行处理

embedding_after_edit_normalized = rms_norm(embedding_after_edit, model["layers.0.ffn_norm.weight"])
embedding_after_edit_normalized.shape
torch.Size([17, 4096])

加载前馈网络权重并实现前馈网络

在llama3中他们使用了SwiGLU前馈网络这种网络架构在模型需要时非常擅长添加非线性。
如今在大型语言模型中使用这种前馈网络架构是相当标准的做法。
w1 = model["layers.0.feed_forward.w1.weight"]
w2 = model["layers.0.feed_forward.w2.weight"]
w3 = model["layers.0.feed_forward.w3.weight"]
output_after_feedforward = torch.matmul(torch.functional.F.silu(torch.matmul(embedding_after_edit_normalized, w1.T)) * torch.matmul(embedding_after_edit_normalized, w3.T), w2.T)
output_after_feedforward.shape
torch.Size([17, 4096])

我们终于在第一层之后得到了每个标记的新编辑嵌入

只剩下31层就完成了只需一个循环
你可以想象这个编辑后的嵌入包含了第一层所有查询的信息
现在,每一层将编码越来越复杂的查询,直到我们得到一个了解下一个需要标记的所有信息的嵌入。

layer_0_embedding = embedding_after_edit+output_after_feedforward
layer_0_embedding.shape
torch.Size([17, 4096])

天啊,一切都在一起

没错,就是这样。我们之前做的一切,现在一次性完成,对每一层都一样。

祝你阅读愉快 :)

final_embedding = token_embeddings_unnormalized
for layer in range(n_layers):
    qkv_attention_store = []
    layer_embedding_norm = rms_norm(final_embedding, model[f"layers.{layer}.attention_norm.weight"])
    q_layer = model[f"layers.{layer}.attention.wq.weight"]
    q_layer = q_layer.view(n_heads, q_layer.shape[0] // n_heads, dim)
    k_layer = model[f"layers.{layer}.attention.wk.weight"]
    k_layer = k_layer.view(n_kv_heads, k_layer.shape[0] // n_kv_heads, dim)
    v_layer = model[f"layers.{layer}.attention.wv.weight"]
    v_layer = v_layer.view(n_kv_heads, v_layer.shape[0] // n_kv_heads, dim)
    w_layer = model[f"layers.{layer}.attention.wo.weight"]
    for head in range(n_heads):
        q_layer_head = q_layer[head]
        k_layer_head = k_layer[head//4]
        v_layer_head = v_layer[head//4]
        q_per_token = torch.matmul(layer_embedding_norm, q_layer_head.T)
        k_per_token = torch.matmul(layer_embedding_norm, k_layer_head.T)
        v_per_token = torch.matmul(layer_embedding_norm, v_layer_head.T)
        q_per_token_split_into_pairs = q_per_token.float().view(q_per_token.shape[0], -1, 2)
        q_per_token_as_complex_numbers = torch.view_as_complex(q_per_token_split_into_pairs)
        q_per_token_split_into_pairs_rotated = torch.view_as_real(q_per_token_as_complex_numbers * freqs_cis)
        q_per_token_rotated = q_per_token_split_into_pairs_rotated.view(q_per_token.shape)
        k_per_token_split_into_pairs = k_per_token.float().view(k_per_token.shape[0], -1, 2)
        k_per_token_as_complex_numbers = torch.view_as_complex(k_per_token_split_into_pairs)
        k_per_token_split_into_pairs_rotated = torch.view_as_real(k_per_token_as_complex_numbers * freqs_cis)
        k_per_token_rotated = k_per_token_split_into_pairs_rotated.view(k_per_token.shape)
        qk_per_token = torch.matmul(q_per_token_rotated, k_per_token_rotated.T)/(128)**0.5
        mask = torch.full((len(token_embeddings_unnormalized), len(token_embeddings_unnormalized)), float("-inf"))
        mask = torch.triu(mask, diagonal=1)
        qk_per_token_after_masking = qk_per_token + mask
        qk_per_token_after_masking_after_softmax = torch.nn.functional.softmax(qk_per_token_after_masking, dim=1).to(torch.bfloat16)
        qkv_attention = torch.matmul(qk_per_token_after_masking_after_softmax, v_per_token)
        qkv_attention_store.append(qkv_attention)

    stacked_qkv_attention = torch.cat(qkv_attention_store, dim=-1)
    w_layer = model[f"layers.{layer}.attention.wo.weight"]
    embedding_delta = torch.matmul(stacked_qkv_attention, w_layer.T)
    embedding_after_edit = final_embedding + embedding_delta
    embedding_after_edit_normalized = rms_norm(embedding_after_edit, model[f"layers.{layer}.ffn_norm.weight"])
    w1 = model[f"layers.{layer}.feed_forward.w1.weight"]
    w2 = model[f"layers.{layer}.feed_forward.w2.weight"]
    w3 = model[f"layers.{layer}.feed_forward.w3.weight"]
    output_after_feedforward = torch.matmul(torch.functional.F.silu(torch.matmul(embedding_after_edit_normalized, w1.T)) * torch.matmul(embedding_after_edit_normalized, w3.T), w2.T)
    final_embedding = embedding_after_edit+output_after_feedforward

我们现在有了最终的嵌入,这是模型对下一个标记的最佳猜测

嵌入的形状与常规标记嵌入相同,为[17x4096]其中17是标记数量4096是嵌入维度

final_embedding = rms_norm(final_embedding, model["norm.weight"])
final_embedding.shape
torch.Size([17, 4096])

最后,让我们将嵌入解码为标记值

我们将使用输出解码器将最终嵌入转换为标记。
model["output.weight"].shape
torch.Size([128256, 4096])

我们使用最后一个标记的嵌入来预测下一个值

希望在我们的例子中是42 :) 注意42是《银河系漫游指南》一书中“生命、宇宙及一切的终极问题的答案”的答案大多数现代大型语言模型在这里都会回答42这应该验证我们的整个代码祝我好运 :)

logits = torch.matmul(final_embedding[-1], model["output.weight"].T)
logits.shape
torch.Size([128256])

模型预测下一个标记为2983号标记这是42的标记号吗

希望这里让你兴奋起来了,这是最后一个代码单元,希望你玩得开心 :)

next_token = torch.argmax(logits, dim=-1)
next_token
tensor(2983)

lets fucking go

tokenizer.decode([next_token.item()])
'42'

谢谢你,我爱你们,亲爱的读者 :)

这就是结尾了。希望你喜欢阅读! 感谢datawhale小伙伴的相关支持和赞赏。 我们是A10 Research很荣幸这个工作帮到大家。 如果你想支持我的工作

  1. 在推特上关注我 https://twitter.com/naklecha
  2. 或者,请我喝杯咖啡 https://www.buymeacoffee.com/naklecha

老实说,如果你能看到这里,你已经让我非常开心了 :)

是什么激励我?

我的朋友和我正在执行一个使命——让研究更易于访问! 我们创建了一个研究实验室叫做A10 - AAAAAAAAAA.org

A10的推特 - https://twitter.com/aaaaaaaaaaorg

我们的论点:

我们目前的主要目标是让研究变得更易获得。这个领域非常混乱大家似乎都在分享低熵的高层次见解哈哈最近的流行语信息熵为0。我们希望深入探讨话题并与大家分享。除此之外我们还会推出一些很棒的开源项目并训练/微调模型(在过程中分享我们的进展)。

备注:预测"datawhalechina is a group for "的下一个词

prompt = "datawhalechina is a group for "
tokens = [128000] + tokenizer.encode(prompt)
print(tokens)
tokens = torch.tensor(tokens)
prompt_split_as_tokens = [tokenizer.decode([token.item()]) for token in tokens]
print(prompt_split_as_tokens)
[128000, 695, 1336, 1604, 81236, 374, 264, 1912, 369, 220]
['<|begin_of_text|>', 'data', 'wh', 'ale', 'china', ' is', ' a', ' group', ' for', ' ']
embedding_layer = torch.nn.Embedding(vocab_size, dim)
embedding_layer.weight.data.copy_(model["tok_embeddings.weight"])
token_embeddings_unnormalized = embedding_layer(tokens).to(torch.bfloat16)
token_embeddings_unnormalized.shape
torch.Size([10, 4096])
from tqdm import tqdm

这里需要由17改10

plt.rcParams["font.sans-serif"]=['simhei']
freqs_for_each_token = torch.outer(torch.arange(10), freqs)
freqs_cis = torch.polar(torch.ones_like(freqs_for_each_token), freqs_for_each_token)
freqs_cis.shape

# 查看freqs_cis的第三行
value = freqs_cis[3]
plt.figure()
for i, element in enumerate(value[:10]):
    plt.plot([0, element.real], [0, element.imag], color='blue', linewidth=1, label=f"Index: {i}")
    plt.annotate(f"{i}", xy=(element.real, element.imag), color='red')
plt.xlabel('实部')
plt.ylabel('虚部')
plt.title('freqs_cis的一行的图示')
plt.show()

png

final_embedding = token_embeddings_unnormalized
for layer in tqdm(range(n_layers)):
    qkv_attention_store = []
    layer_embedding_norm = rms_norm(final_embedding, model[f"layers.{layer}.attention_norm.weight"])
    q_layer = model[f"layers.{layer}.attention.wq.weight"]
    q_layer = q_layer.view(n_heads, q_layer.shape[0] // n_heads, dim)
    k_layer = model[f"layers.{layer}.attention.wk.weight"]
    k_layer = k_layer.view(n_kv_heads, k_layer.shape[0] // n_kv_heads, dim)
    v_layer = model[f"layers.{layer}.attention.wv.weight"]
    v_layer = v_layer.view(n_kv_heads, v_layer.shape[0] // n_kv_heads, dim)
    w_layer = model[f"layers.{layer}.attention.wo.weight"]
    for head in range(n_heads):
        q_layer_head = q_layer[head]
        k_layer_head = k_layer[head//4]
        v_layer_head = v_layer[head//4]
        q_per_token = torch.matmul(layer_embedding_norm, q_layer_head.T)
        k_per_token = torch.matmul(layer_embedding_norm, k_layer_head.T)
        v_per_token = torch.matmul(layer_embedding_norm, v_layer_head.T)
        q_per_token_split_into_pairs = q_per_token.float().view(q_per_token.shape[0], -1, 2)
        q_per_token_as_complex_numbers = torch.view_as_complex(q_per_token_split_into_pairs)
        q_per_token_split_into_pairs_rotated = torch.view_as_real(q_per_token_as_complex_numbers * freqs_cis)
        q_per_token_rotated = q_per_token_split_into_pairs_rotated.view(q_per_token.shape)
        k_per_token_split_into_pairs = k_per_token.float().view(k_per_token.shape[0], -1, 2)
        k_per_token_as_complex_numbers = torch.view_as_complex(k_per_token_split_into_pairs)
        k_per_token_split_into_pairs_rotated = torch.view_as_real(k_per_token_as_complex_numbers * freqs_cis)
        k_per_token_rotated = k_per_token_split_into_pairs_rotated.view(k_per_token.shape)
        qk_per_token = torch.matmul(q_per_token_rotated, k_per_token_rotated.T)/(128)**0.5
        mask = torch.full((len(token_embeddings_unnormalized), len(token_embeddings_unnormalized)), float("-inf"))
        mask = torch.triu(mask, diagonal=1)
        qk_per_token_after_masking = qk_per_token + mask
        qk_per_token_after_masking_after_softmax = torch.nn.functional.softmax(qk_per_token_after_masking, dim=1).to(torch.bfloat16)
        qkv_attention = torch.matmul(qk_per_token_after_masking_after_softmax, v_per_token)
        qkv_attention_store.append(qkv_attention)

    stacked_qkv_attention = torch.cat(qkv_attention_store, dim=-1)
    w_layer = model[f"layers.{layer}.attention.wo.weight"]
    embedding_delta = torch.matmul(stacked_qkv_attention, w_layer.T)
    embedding_after_edit = final_embedding + embedding_delta
    embedding_after_edit_normalized = rms_norm(embedding_after_edit, model[f"layers.{layer}.ffn_norm.weight"])
    w1 = model[f"layers.{layer}.feed_forward.w1.weight"]
    w2 = model[f"layers.{layer}.feed_forward.w2.weight"]
    w3 = model[f"layers.{layer}.feed_forward.w3.weight"]
    output_after_feedforward = torch.matmul(torch.functional.F.silu(torch.matmul(embedding_after_edit_normalized, w1.T)) * torch.matmul(embedding_after_edit_normalized, w3.T), w2.T)
    final_embedding = embedding_after_edit+output_after_feedforward
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████| 32/32 [00:59<00:00,  1.87s/it]
final_embedding = rms_norm(final_embedding, model["norm.weight"])
logits = torch.matmul(final_embedding[-1], model["output.weight"].T)
next_token = torch.argmax(logits, dim=-1)
tokenizer.decode([next_token.item()])
' data'

备注:部分代码草稿

k_per_token_rotated = k_per_token_split_into_pairs_rotated.view(k_per_token.shape)
k_per_token_split_into_pairs_rotated = torch.view_as_real(k_per_token_as_complex_numbers * freqs_cis)
k_per_token_as_complex_numbers = torch.view_as_complex(k_per_token_split_into_pairs)
k_per_token_split_into_pairs = k_per_token.float().view(k_per_token.shape[0], -1, 2)
k_per_token = torch.matmul(token_embeddings, k_layer0_head0.T)
k_layer0_head0 = k_layer0[0]
k_layer0 = model["layers.0.attention.wk.weight"]
k_layer0 = k_layer0.view(n_kv_heads, k_layer0.shape[0] // n_kv_heads, dim)
qk_per_token = torch.matmul(q_per_token_rotated, k_per_token_rotated.T)/(head_dim)**0.5
mask = torch.full((len(tokens), len(tokens)), float("-inf"), device=tokens.device)
mask = torch.triu(mask, diagonal=1)
qk_per_token_after_masking = qk_per_token + mask
qk_per_token_after_masking_after_softmax = torch.nn.functional.softmax(qk_per_token_after_masking, dim=1).to(torch.bfloat16)
v_layer0_head0 = v_layer0[0]
v_layer0 = model["layers.0.attention.wv.weight"]
v_layer0 = v_layer0.view(n_kv_heads, v_layer0.shape[0] // n_kv_heads, dim)
v_per_token = torch.matmul(token_embeddings, v_layer0_head0.T)
qkv_attention = torch.matmul(qk_per_token_after_masking_after_softmax, v_per_token)
qkv_attention_store = []

for head in range(n_heads):
    q_layer0_head = q_layer0[head]
    k_layer0_head = k_layer0[head//4] # key weights are shared across 4 heads
    v_layer0_head = v_layer0[head//4] # value weights are shared across 4 heads
    q_per_token = torch.matmul(token_embeddings, q_layer0_head.T)
    k_per_token = torch.matmul(token_embeddings, k_layer0_head.T)
    v_per_token = torch.matmul(token_embeddings, v_layer0_head.T)

    q_per_token_split_into_pairs = q_per_token.float().view(q_per_token.shape[0], -1, 2)
    q_per_token_as_complex_numbers = torch.view_as_complex(q_per_token_split_into_pairs)
    q_per_token_split_into_pairs_rotated = torch.view_as_real(q_per_token_as_complex_numbers * freqs_cis[:len(tokens)])
    q_per_token_rotated = q_per_token_split_into_pairs_rotated.view(q_per_token.shape)

    k_per_token_split_into_pairs = k_per_token.float().view(k_per_token.shape[0], -1, 2)
    k_per_token_as_complex_numbers = torch.view_as_complex(k_per_token_split_into_pairs)
    k_per_token_split_into_pairs_rotated = torch.view_as_real(k_per_token_as_complex_numbers * freqs_cis[:len(tokens)])
    k_per_token_rotated = k_per_token_split_into_pairs_rotated.view(k_per_token.shape)

    qk_per_token = torch.matmul(q_per_token_rotated, k_per_token_rotated.T)/(128)**0.5
    mask = torch.full((len(tokens), len(tokens)), float("-inf"), device=tokens.device)
    mask = torch.triu(mask, diagonal=1)
    qk_per_token_after_masking = qk_per_token + mask
    qk_per_token_after_masking_after_softmax = torch.nn.functional.softmax(qk_per_token_after_masking, dim=1).to(torch.bfloat16)
    qkv_attention = torch.matmul(qk_per_token_after_masking_after_softmax, v_per_token)
    qkv_attention = torch.matmul(qk_per_token_after_masking_after_softmax, v_per_token)
    qkv_attention_store.append(qkv_attention)

# len(qkv_attention_store)
stacked_qkv_attention = torch.cat(qkv_attention_store, dim=-1)

w_layer0 = model["layers.0.attention.wo.weight"]
embedding_delta = torch.matmul(stacked_qkv_attention, w_layer0.T)
embedding_after_edit = token_embeddings_unnormalized + embedding_delta
embedding_after_edit_normalized = rms_norm(embedding_after_edit, model["layers.0.ffn_norm.weight"])
w1 = model["layers.0.feed_forward.w1.weight"]
w2 = model["layers.0.feed_forward.w2.weight"]
w3 = model["layers.0.feed_forward.w3.weight"]
output_after_feedforward = torch.matmul(torch.functional.F.silu(torch.matmul(embedding_after_edit_normalized, w1.T)) * torch.matmul(embedding_after_edit_normalized, w3.T), w2.T)
layer_0_embedding = embedding_after_edit+output_after_feedforward
final_embedding = token_embeddings_unnormalized
for layer in range(n_layers):
    qkv_attention_store = []
    layer_embedding_norm = rms_norm(final_embedding, model[f"layers.{layer}.attention_norm.weight"])
    q_layer = model[f"layers.{layer}.attention.wq.weight"]
    q_layer = q_layer.view(n_heads, q_layer.shape[0] // n_heads, dim)
    k_layer = model[f"layers.{layer}.attention.wk.weight"]
    k_layer = k_layer.view(n_kv_heads, k_layer.shape[0] // n_kv_heads, dim)
    v_layer = model[f"layers.{layer}.attention.wv.weight"]
    v_layer = v_layer.view(n_kv_heads, v_layer.shape[0] // n_kv_heads, dim)
    w_layer = model[f"layers.{layer}.attention.wo.weight"]
    for head in range(n_heads):
        q_layer_head = q_layer[head]
        k_layer_head = k_layer[head//4]
        v_layer_head = v_layer[head//4]
        q_per_token = torch.matmul(layer_embedding_norm, q_layer_head.T)
        k_per_token = torch.matmul(layer_embedding_norm, k_layer_head.T)
        v_per_token = torch.matmul(layer_embedding_norm, v_layer_head.T)
        q_per_token_split_into_pairs = q_per_token.float().view(q_per_token.shape[0], -1, 2)
        q_per_token_as_complex_numbers = torch.view_as_complex(q_per_token_split_into_pairs)
        q_per_token_split_into_pairs_rotated = torch.view_as_real(q_per_token_as_complex_numbers * freqs_cis)
        q_per_token_rotated = q_per_token_split_into_pairs_rotated.view(q_per_token.shape)
        k_per_token_split_into_pairs = k_per_token.float().view(k_per_token.shape[0], -1, 2)
        k_per_token_as_complex_numbers = torch.view_as_complex(k_per_token_split_into_pairs)
        k_per_token_split_into_pairs_rotated = torch.view_as_real(k_per_token_as_complex_numbers * freqs_cis)
        k_per_token_rotated = k_per_token_split_into_pairs_rotated.view(k_per_token.shape)
        qk_per_token = torch.matmul(q_per_token_rotated, k_per_token_rotated.T)/(128)**0.5
        mask = torch.full((len(token_embeddings_unnormalized), len(token_embeddings_unnormalized)), float("-inf"))
        mask = torch.triu(mask, diagonal=1)
        qk_per_token_after_masking = qk_per_token + mask
        qk_per_token_after_masking_after_softmax = torch.nn.functional.softmax(qk_per_token_after_masking, dim=1).to(torch.bfloat16)
        qkv_attention = torch.matmul(qk_per_token_after_masking_after_softmax, v_per_token)
        qkv_attention_store.append(qkv_attention)

    stacked_qkv_attention = torch.cat(qkv_attention_store, dim=-1)
    w_layer = model[f"layers.{layer}.attention.wo.weight"]
    embedding_delta = torch.matmul(stacked_qkv_attention, w_layer.T)
    embedding_after_edit = final_embedding + embedding_delta
    embedding_after_edit_normalized = rms_norm(embedding_after_edit, model[f"layers.{layer}.ffn_norm.weight"])
    w1 = model[f"layers.{layer}.feed_forward.w1.weight"]
    w2 = model[f"layers.{layer}.feed_forward.w2.weight"]
    w3 = model[f"layers.{layer}.feed_forward.w3.weight"]
    output_after_feedforward = torch.matmul(torch.functional.F.silu(torch.matmul(embedding_after_edit_normalized, w1.T)) * torch.matmul(embedding_after_edit_normalized, w3.T), w2.T)
    final_embedding = embedding_after_edit+output_after_feedforward
final_embedding = rms_norm(final_embedding, model["norm.weight"])
logits = torch.matmul(final_embedding[-1], model["output.weight"].T)
next_token = torch.argmax(logits, dim=-1)
tokenizer.decode([next_token.item()])