mirror of
https://github.com/jingyaogong/minimind.git
synced 2026-02-07 11:30:55 +08:00
2.5 KiB
2.5 KiB
Quick Start
This page will help you quickly get started with the MiniMind project.
📋 Requirements
- Python: 3.10+
- PyTorch: 1.12+
- CUDA: 12.2+ (optional, for GPU acceleration)
- VRAM: At least 8GB (24GB recommended)
!!! tip "Hardware Configuration Reference" - CPU: Intel i9-10980XE @ 3.00GHz - RAM: 128 GB - GPU: NVIDIA GeForce RTX 3090 (24GB)
🚀 Testing Existing Models
1. Clone the Project
git clone https://github.com/jingyaogong/minimind.git
cd minimind
2. Install Dependencies
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
!!! warning "Torch CUDA Check"
After installation, test if Torch can use CUDA:
python import torch print(torch.cuda.is_available())
3. Download Model
Download pretrained models from HuggingFace or ModelScope:
# From HuggingFace
git clone https://huggingface.co/jingyaogong/MiniMind2
# Or from ModelScope
git clone https://www.modelscope.cn/models/gongjy/MiniMind2.git
4. Command Line Q&A
# load=0: load PyTorch model, load=1: load Transformers model
python eval_model.py --load 1 --model_mode 2
5. Start WebUI (Optional)
# Requires Python >= 3.10
pip install streamlit
cd scripts
streamlit run web_demo.py
Visit http://localhost:8501 to use the web interface.
🔧 Third-party Inference Frameworks
MiniMind supports multiple mainstream inference frameworks:
Ollama
ollama run jingyaogong/minimind2
vLLM
vllm serve ./MiniMind2/ --served-model-name "minimind"
llama.cpp
# Convert model
python convert_hf_to_gguf.py ./MiniMind2/
# Quantize model
./build/bin/llama-quantize ./MiniMind2/MiniMind2-109M-F16.gguf ./Q4-MiniMind2.gguf Q4_K_M
# Inference
./build/bin/llama-cli -m ./Q4-MiniMind2.gguf --chat-template chatml
📝 Effect Testing
👶: Hello, please introduce yourself.
🤖️: Hello! I'm MiniMind, an AI assistant developed by Jingyao Gong.
I interact with users through natural language processing and algorithm training.
👶: What is the highest mountain in the world?
🤖️: Mount Everest is the highest mountain in the world, located in the Himalayas,
with an elevation of 8,848.86 meters (29,031.7 feet).
🎯 Next Steps
- Check Model Training to learn how to train your own model from scratch
- Read the source code to understand LLM implementation principles