mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-13 22:18:36 +08:00
Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com> Signed-off-by: Tian Zheng <29906817+Tom-Zheng@users.noreply.github.com> Co-authored-by: Tian Zheng <29906817+Tom-Zheng@users.noreply.github.com>
92 lines
2.7 KiB
Markdown
92 lines
2.7 KiB
Markdown
# LongBench Evaluation with TensorRT-LLM and Sparse Attention
|
|
|
|
This directory contains evaluation scripts for LongBench v1 datasets using TensorRT-LLM backend.
|
|
|
|
> **Note**:
|
|
LongBench v2 evaluation has been integrated into `trtllm-eval`. Please refer to `tensorrt_llm/evaluate/longbench_v2.py` for details.
|
|
|
|
|
|
## Environment Setup
|
|
|
|
### 1. Clone LongBench Repository
|
|
|
|
First, clone the LongBench repository which contains the datasets and evaluation utilities:
|
|
|
|
```bash
|
|
git clone https://github.com/THUDM/LongBench.git
|
|
```
|
|
|
|
### 2. Install Requirements
|
|
|
|
Install the required dependencies:
|
|
|
|
```bash
|
|
pip install -r requirements.txt
|
|
```
|
|
|
|
### 3. Directory Structure
|
|
|
|
After cloning, your directory structure should look like:
|
|
|
|
```text
|
|
sparse_attention/
|
|
├── eval_longbench_v1.py # LongBench v1 evaluation script
|
|
├── README.md # This file
|
|
└── LongBench/ # Cloned LongBench repository
|
|
├── LongBench/ # LongBench v1 data and configs
|
|
│ ├── config/
|
|
│ └── ...
|
|
├── ...
|
|
└── requirements.txt
|
|
```
|
|
|
|
## Scripts Overview
|
|
|
|
The script `eval_longbench_v1.py` evaluates models on the **LongBench v1** dataset, which includes multiple specific tasks like narrativeqa, qasper, multifieldqa, etc. Key features:
|
|
|
|
- **Dataset**: LongBench v1 with task-specific evaluation
|
|
- **Tasks**: Support for 20+ different long-context tasks
|
|
- **Prompts**: Task-specific prompts from LongBench v1 configuration
|
|
- **Metrics**: Task-specific metrics (F1, ROUGE, classification scores, etc.)
|
|
- **Output**: Task-level results with comprehensive summary statistics
|
|
|
|
## Usage Examples
|
|
|
|
### Basic Usage (Standard Attention)
|
|
```bash
|
|
python eval_longbench_v1.py \
|
|
--model_path "/path/to/your/model" \
|
|
--longbench_path ./LongBench \
|
|
--output_dir results/v1_vanilla \
|
|
--attention_backend VANILLA \
|
|
--backend pytorch
|
|
```
|
|
|
|
### Specific tasks With Sparse Attention (RocketKV)
|
|
```bash
|
|
python eval_longbench_v1.py \
|
|
--model_path "/path/to/your/model" \
|
|
--longbench_path ./LongBench \
|
|
--dataset narrativeqa qasper \
|
|
--output_dir results/v1_rocket \
|
|
--attention_backend VANILLA \
|
|
--backend pytorch \
|
|
--rocket_sparse
|
|
```
|
|
|
|
## Output Structure
|
|
|
|
```text
|
|
results/v1_experiment/
|
|
├── config.json # Experiment configuration
|
|
├── overall_summary.json # Overall experiment summary
|
|
├── narrativeqa/
|
|
│ ├── narrativeqa_results.jsonl # Detailed results
|
|
│ ├── narrativeqa_summary.json # Task summary
|
|
│ └── pred/
|
|
│ └── narrativeqa.jsonl # Predictions in LongBench format
|
|
├── qasper/
|
|
│ └── ...
|
|
└── ...
|
|
```
|