TensorRT-LLMs/examples/longbench/README.md
Bo Li a66eeab537
[TRTLLM-9805][feat] Skip Softmax Attention. (#9821)
Signed-off-by: Bo Li <22713281+bobboli@users.noreply.github.com>
Signed-off-by: Tian Zheng <29906817+Tom-Zheng@users.noreply.github.com>
Co-authored-by: Tian Zheng <29906817+Tom-Zheng@users.noreply.github.com>
2025-12-21 02:52:42 -05:00

92 lines
2.7 KiB
Markdown

# LongBench Evaluation with TensorRT-LLM and Sparse Attention
This directory contains evaluation scripts for LongBench v1 datasets using TensorRT-LLM backend.
> **Note**:
LongBench v2 evaluation has been integrated into `trtllm-eval`. Please refer to `tensorrt_llm/evaluate/longbench_v2.py` for details.
## Environment Setup
### 1. Clone LongBench Repository
First, clone the LongBench repository which contains the datasets and evaluation utilities:
```bash
git clone https://github.com/THUDM/LongBench.git
```
### 2. Install Requirements
Install the required dependencies:
```bash
pip install -r requirements.txt
```
### 3. Directory Structure
After cloning, your directory structure should look like:
```text
sparse_attention/
├── eval_longbench_v1.py # LongBench v1 evaluation script
├── README.md # This file
└── LongBench/ # Cloned LongBench repository
├── LongBench/ # LongBench v1 data and configs
│ ├── config/
│ └── ...
├── ...
└── requirements.txt
```
## Scripts Overview
The script `eval_longbench_v1.py` evaluates models on the **LongBench v1** dataset, which includes multiple specific tasks like narrativeqa, qasper, multifieldqa, etc. Key features:
- **Dataset**: LongBench v1 with task-specific evaluation
- **Tasks**: Support for 20+ different long-context tasks
- **Prompts**: Task-specific prompts from LongBench v1 configuration
- **Metrics**: Task-specific metrics (F1, ROUGE, classification scores, etc.)
- **Output**: Task-level results with comprehensive summary statistics
## Usage Examples
### Basic Usage (Standard Attention)
```bash
python eval_longbench_v1.py \
--model_path "/path/to/your/model" \
--longbench_path ./LongBench \
--output_dir results/v1_vanilla \
--attention_backend VANILLA \
--backend pytorch
```
### Specific tasks With Sparse Attention (RocketKV)
```bash
python eval_longbench_v1.py \
--model_path "/path/to/your/model" \
--longbench_path ./LongBench \
--dataset narrativeqa qasper \
--output_dir results/v1_rocket \
--attention_backend VANILLA \
--backend pytorch \
--rocket_sparse
```
## Output Structure
```text
results/v1_experiment/
├── config.json # Experiment configuration
├── overall_summary.json # Overall experiment summary
├── narrativeqa/
│ ├── narrativeqa_results.jsonl # Detailed results
│ ├── narrativeqa_summary.json # Task summary
│ └── pred/
│ └── narrativeqa.jsonl # Predictions in LongBench format
├── qasper/
│ └── ...
└── ...
```