mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
227 lines
9.7 KiB
Markdown
227 lines
9.7 KiB
Markdown
# Mamba
|
|
|
|
This document shows how to build and run a [Mamba](https://github.com/state-spaces/mamba) model in TensorRT-LLM on a single GPU.
|
|
|
|
- [Mamba](#mamba)
|
|
- [Overview](#overview)
|
|
- [Support Matrix](#support-matrix)
|
|
- [Usage](#usage)
|
|
- [1. Download weights from HuggingFace Transformers](#1-download-weights-from-huggingface-transformers)
|
|
- [2. Convert weights from HF Transformers to TensorRT-LLM format](#2-convert-dweights-from-hf-transformers-to-tensorrt-llm-format)
|
|
- [3. Build TensorRT engine(s)](#3-build-tensorrt-engines)
|
|
- [4. Run summarization task with the TensorRT engine(s)](#4-run-summarization-task-with-the-tensorrt-engines)
|
|
|
|
## Overview
|
|
|
|
The TensorRT-LLM Mamba implementation can be found in [`tensorrt_llm/models/mamba/model.py`](../../tensorrt_llm/models/mamba/model.py). The TensorRT-LLM Mamba example code is located in [`examples/mamba`](./). There is one main file:
|
|
|
|
* [`convert_checkpoint.py`](./convert_checkpoint.py) to convert a checkpoint from the [HuggingFace (HF) Transformers](https://github.com/huggingface/transformers) format to the TensorRT-LLM format.
|
|
|
|
In addition, there are two shared files in the parent folder [`examples`](../) for inference and evaluation:
|
|
|
|
* [`../run.py`](../run.py) to run the inference on an input text;
|
|
* [`../summarize.py`](../summarize.py) to summarize the articles in the [cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail) dataset.
|
|
|
|
|
|
## Support Matrix
|
|
|
|
| Model Name | FP16 | BF16 | TP |
|
|
| :--------------: | :---: | :---: | :-: |
|
|
| Mamba1 | Y | Y | N |
|
|
| Mamba2 | Y | Y | Y |
|
|
|
|
* Mamba2: TensorRT-LLM can only support the pure Mamba model for now, will support the hybrid models later.
|
|
|
|
## Usage
|
|
|
|
The next two sections describe how to convert the weights from the [HuggingFace (HF) Transformers](https://github.com/huggingface/transformers)
|
|
format to the TensorRT-LLM format.
|
|
|
|
### 1. Download weights from HuggingFace Transformers
|
|
|
|
Please install required packages first and setup `git-lfs`:
|
|
|
|
```bash
|
|
pip install -r requirements.txt
|
|
git lfs install
|
|
```
|
|
|
|
There are different HF checkpoints available. For Mamba1, TensorRT-LLM can support those Transformers compatible models. Here're some examples to fetch the checkpoint.
|
|
|
|
```bash
|
|
# mamba-2.8b
|
|
git clone https://huggingface.co/state-spaces/mamba-2.8b-hf ./mamba_model/mamba-2.8b
|
|
|
|
# mamba-130m
|
|
git clone https://huggingface.co/state-spaces/mamba-130m-hf ./mamba_model/mamba-130m
|
|
|
|
# mamba2-2.7b
|
|
git clone https://huggingface.co/state-spaces/mamba2-2.7b ./mamba_model/mamba2-2.7b
|
|
|
|
# mamba2-130m
|
|
git clone https://huggingface.co/state-spaces/mamba2-130m ./mamba_model/mamba2-130m
|
|
|
|
# mamba-codestral-7B-v0.1
|
|
git clone https://huggingface.co/mistralai/mamba-codestral-7B-v0.1 ./mamba_model/mamba-codestral-7B-v0.1
|
|
```
|
|
|
|
Since mamba models use tokenizer from gpt-neox-20b model, use the following command to fetch the checkpoint of gpt-neox-20b.
|
|
|
|
```bash
|
|
# gpt-neox-20b
|
|
git clone https://huggingface.co/EleutherAI/gpt-neox-20b ./mamba_model/gpt-neox-20b
|
|
```
|
|
|
|
### 2. Convert weights from HF Transformers to TensorRT-LLM format
|
|
The [`convert_checkpoint.py`](./convert_checkpoint.py) script converts HF weights to TensorRT-LLM checkpoints.
|
|
|
|
For the Mamba2 models, if they can support tensor parallelism, you can run them with 1, 2, 4 or 8 GPUs. Here we use
|
|
mamba-codestral-7B-v0.1 as an example.
|
|
|
|
```bash
|
|
# mamba-2.8b
|
|
python convert_checkpoint.py --model_dir ./mamba_model/mamba-2.8b/ \
|
|
--dtype bfloat16 \
|
|
--output_dir ./mamba_model/mamba-2.8b/trt_ckpt/bf16/1-gpu/
|
|
|
|
# mamba-130m
|
|
python convert_checkpoint.py --model_dir ./mamba_model/mamba-130m/ \
|
|
--dtype float16 \
|
|
--output_dir ./mamba_model/mamba-130m/trt_ckpt/fp16/1-gpu/
|
|
|
|
# mamba2-2.7b
|
|
python convert_checkpoint.py --model_dir ./mamba_model/mamba2-2.7b/ \
|
|
--dtype float16 \
|
|
--output_dir ./mamba_model/mamba2-2.7b/trt_ckpt/fp16/1-gpu/
|
|
|
|
# mamba2-130m
|
|
python convert_checkpoint.py --model_dir ./mamba_model/mamba2-130m/ \
|
|
--dtype float16 \
|
|
--output_dir ./mamba_model/mamba2-130m/trt_ckpt/fp16/1-gpu/
|
|
|
|
# mamba-codestral-7B-v0.1
|
|
python convert_checkpoint.py --model_dir ./mamba_model/mamba-codestral-7B-v0.1/ \
|
|
--dtype float16 \
|
|
--output_dir ./mamba_model/mamba-codestral-7B-v0.1/trt_ckpt/fp16/1-gpu/
|
|
|
|
# mamba-codestral-7B-v0.1 with 2-way tensor parallelism.
|
|
python convert_checkpoint.py --model_dir ./mamba_model/mamba-codestral-7B-v0.1/ \
|
|
--dtype float16 \
|
|
--world_size 2 \
|
|
--output_dir ./mamba_model/mamba-codestral-7B-v0.1/trt_ckpt/fp16/2-gpu/
|
|
```
|
|
|
|
### 3. Build TensorRT engine(s)
|
|
The `trtllm-build` command builds TensorRT-LLM engines from TensorRT-LLM checkpoints.
|
|
|
|
```bash
|
|
# mamba-2.8b
|
|
trtllm-build --checkpoint_dir ./mamba_model/mamba-2.8b/trt_ckpt/bf16/1-gpu/ \
|
|
--paged_kv_cache disable \
|
|
--gemm_plugin auto \
|
|
--max_batch_size 8 \
|
|
--max_input_len 924 \
|
|
--max_seq_len 1024 \
|
|
--output_dir ./mamba_model/mamba-2.8b/trt_engines/bf16/1-gpu/
|
|
|
|
# mamba-130m
|
|
trtllm-build --checkpoint_dir ./mamba_model/mamba-130m/trt_ckpt/fp16/1-gpu/ \
|
|
--paged_kv_cache disable \
|
|
--gemm_plugin auto \
|
|
--max_batch_size 8 \
|
|
--max_input_len 924 \
|
|
--max_seq_len 1024 \
|
|
--output_dir ./mamba_model/mamba-130m/trt_engines/fp16/1-gpu/
|
|
|
|
# mamba2-2.7b
|
|
trtllm-build --checkpoint_dir ./mamba_model/mamba2-2.7b/trt_ckpt/fp16/1-gpu/ \
|
|
--paged_kv_cache disable \
|
|
--gemm_plugin auto \
|
|
--max_batch_size 8 \
|
|
--max_input_len 924 \
|
|
--max_seq_len 1024 \
|
|
--output_dir ./mamba_model/mamba2-2.7b/trt_engines/fp16/1-gpu/
|
|
|
|
# mamba2-130m
|
|
trtllm-build --checkpoint_dir ./mamba_model/mamba2-130m/trt_ckpt/fp16/1-gpu/ \
|
|
--paged_kv_cache disable \
|
|
--gemm_plugin auto \
|
|
--max_batch_size 8 \
|
|
--max_input_len 924 \
|
|
--max_seq_len 1024 \
|
|
--output_dir ./mamba_model/mamba2-130m/trt_engines/fp16/1-gpu/
|
|
|
|
# mamba-codestral-7B-v0.1
|
|
trtllm-build --checkpoint_dir ./mamba_model/mamba-codestral-7B-v0.1/trt_ckpt/fp16/1-gpu/ \
|
|
--paged_kv_cache disable \
|
|
--gemm_plugin auto \
|
|
--max_batch_size 8 \
|
|
--max_input_len 924 \
|
|
--max_seq_len 1024 \
|
|
--output_dir ./mamba_model/mamba-codestral-7B-v0.1/trt_engines/fp16/1-gpu/
|
|
|
|
# mamba-codestral-7B-v0.1 with 2-way tensor parallelism.
|
|
trtllm-build --checkpoint_dir ./mamba_model/mamba-codestral-7B-v0.1/trt_ckpt/fp16/2-gpu/ \
|
|
--paged_kv_cache disable \
|
|
--gemm_plugin auto \
|
|
--max_batch_size 8 \
|
|
--max_input_len 924 \
|
|
--max_seq_len 1024 \
|
|
--output_dir ./mamba_model/mamba-codestral-7B-v0.1/trt_engines/fp16/2-gpu/
|
|
```
|
|
|
|
Note that when building Mamba models, you need to disable the `paged_kv_cache` as it is used for
|
|
transformer-based models. Mamba models use `paged_state` instead and it is enabled by default.
|
|
If `paged_state` is disabled, engine will be built with the contiguous stage cache.
|
|
|
|
### 4. Run summarization task with the TensorRT engine(s)
|
|
|
|
The following section describes how to run a TensorRT-LLM Mamba model to summarize the articles from the
|
|
[cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail) dataset. For each summary, the script can compute the
|
|
[ROUGE](https://en.wikipedia.org/wiki/ROUGE_(metric)) scores and use the `ROUGE-1` score to validate the implementation.
|
|
|
|
```bash
|
|
# mamba-2.8b
|
|
python ../summarize.py --test_trt_llm \
|
|
--hf_model_dir ./mamba_model/mamba-2.8b/ \
|
|
--tokenizer_dir ./mamba_model/gpt-neox-20b/ \
|
|
--data_type bf16 \
|
|
--engine_dir ./mamba_model/mamba-2.8b/trt_engines/bf16/1-gpu/
|
|
|
|
# mamba-130m
|
|
python ../summarize.py --test_trt_llm \
|
|
--hf_model_dir ./mamba_model/mamba-130m/ \
|
|
--tokenizer_dir ./mamba_model/gpt-neox-20b/ \
|
|
--data_type fp16 \
|
|
--engine_dir ./mamba_model/mamba-130m/trt_engines/fp16/1-gpu/
|
|
|
|
# mamba2-2.7b
|
|
python ../summarize.py --test_trt_llm \
|
|
--hf_model_dir ./mamba_model/mamba2-2.7b/ \
|
|
--tokenizer_dir ./mamba_model/gpt-neox-20b/ \
|
|
--data_type fp16 \
|
|
--engine_dir ./mamba_model/mamba2-2.7b/trt_engines/fp16/1-gpu/
|
|
|
|
# mamba2-130m
|
|
python ../summarize.py --test_trt_llm \
|
|
--hf_model_dir ./mamba_model/mamba2-130m/ \
|
|
--tokenizer_dir ./mamba_model/gpt-neox-20b/ \
|
|
--data_type fp16 \
|
|
--engine_dir ./mamba_model/mamba2-130m/trt_engines/fp16/1-gpu/
|
|
|
|
# mamba-codestral-7B-v0.1
|
|
python ../summarize.py --test_trt_llm \
|
|
--hf_model_dir ./mamba_model/mamba-codestral-7B-v0.1/ \
|
|
--tokenizer_dir ./mamba_model/mamba-codestral-7B-v0.1/ \
|
|
--data_type fp16 \
|
|
--engine_dir ./mamba_model/mamba-codestral-7B-v0.1/trt_engines/fp16/1-gpu/
|
|
|
|
# mamba-codestral-7B-v0.1 with 2-way tensor parallelism.
|
|
mpirun -n 2 --allow-run-as-root \
|
|
python ../summarize.py --test_trt_llm \
|
|
--hf_model_dir ./mamba_model/mamba-codestral-7B-v0.1/ \
|
|
--tokenizer_dir ./mamba_model/mamba-codestral-7B-v0.1/ \
|
|
--data_type fp16 \
|
|
--engine_dir ./mamba_model/mamba-codestral-7B-v0.1/trt_engines/fp16/2-gpu/
|
|
```
|