mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-02-21 18:25:20 +08:00
* Update TensorRT-LLM --------- Co-authored-by: wangruohui <12756472+wangruohui@users.noreply.github.com>
223 lines
10 KiB
Markdown
223 lines
10 KiB
Markdown
# Baichuan
|
|
|
|
This document shows how to build and run a Baichuan models (including `v1_7b`/`v1_13b`/`v2_7b`/`v2_13b`) in TensorRT-LLM on both single GPU and single node multi-GPU.
|
|
|
|
## Overview
|
|
|
|
The TensorRT-LLM Baichuan implementation can be found in [tensorrt_llm/models/baichuan/model.py](../../tensorrt_llm/models/baichuan/model.py). The TensorRT-LLM Baichuan example code is located in [`examples/baichuan`](./). There are three main files in that folder::
|
|
|
|
* [`build.py`](./build.py) to build the [TensorRT](https://developer.nvidia.com/tensorrt) engine(s) needed to run the Baichuan model,
|
|
* [`run.py`](./run.py) to run the inference on an input text,
|
|
* [`summarize.py`](./summarize.py) to summarize the articles in the [cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail) dataset using the model.
|
|
|
|
These scripts accept an argument named model_version, whose value should be `v1_7b`/`v1_13b`/`v2_7b`/`v2_13b` and the default value is `v1_13b`.
|
|
|
|
## Support Matrix
|
|
* FP16
|
|
* BF16
|
|
* INT4 & INT8 Weight-Only
|
|
* INT8 KV CACHE
|
|
* INT8 Smooth Quant
|
|
|
|
## Usage
|
|
|
|
The TensorRT-LLM Baichuan example code locates at [examples/baichuan](./). It takes HF weights as input, and builds the corresponding TensorRT engines. The number of TensorRT engines depends on the number of GPUs used to run inference.
|
|
|
|
### Build TensorRT engine(s)
|
|
|
|
Need to specify the HF Baichuan checkpoint path. For `v1_13b`, you should use whether [baichuan-inc/Baichuan-13B-Chat](https://huggingface.co/baichuan-inc/Baichuan-13B-Chat) or [baichuan-inc/Baichuan-13B-Base](https://huggingface.co/baichuan-inc/Baichuan-13B-Base). For `v2_13b`, you should use whether [baichuan-inc/Baichuan2-13B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat) or [baichuan-inc/Baichuan2-13B-Base](https://huggingface.co/baichuan-inc/Baichuan2-13B-Base). More Baichuan models could be found on [baichuan-inc](https://huggingface.co/baichuan-inc).
|
|
|
|
TensorRT-LLM Baichuan builds TensorRT engine(s) from HF checkpoint. If no checkpoint directory is specified, TensorRT-LLM will build engine(s) with dummy weights.
|
|
|
|
Normally `build.py` only requires single GPU, but if you've already got all the GPUs needed while inferencing, you could enable parallelly building to make the engine building process faster by adding `--parallel_build` argument. Please note that currently `parallel_build` feature only supports single node.
|
|
|
|
Here're some examples that take `v1_13b` as example:
|
|
|
|
```bash
|
|
# Build a single-GPU float16 engine from HF weights.
|
|
# Enable the special TensorRT-LLM GPT Attention plugin (--use_gpt_attention_plugin) to increase runtime performance.
|
|
# 7B models should always add --use_gpt_attention_plugin since RoPE is only supported with GPTAttention plugin now.
|
|
# Try use_gemm_plugin to prevent accuracy issue.
|
|
|
|
# Build the Baichuan V1 13B model using a single GPU and FP16.
|
|
python build.py --model_version v1_13b \
|
|
--model_dir baichuan-inc/Baichuan-13B-Chat \
|
|
--dtype float16 \
|
|
--use_gemm_plugin float16 \
|
|
--use_gpt_attention_plugin float16 \
|
|
--output_dir ./tmp/baichuan_v1_13b/trt_engines/fp16/1-gpu/
|
|
|
|
# Build the Baichuan V1 13B model using a single GPU and BF16.
|
|
python build.py --model_version v1_13b \
|
|
--model_dir baichuan-inc/Baichuan-13B-Chat \
|
|
--dtype bfloat16 \
|
|
--use_gemm_plugin bfloat16 \
|
|
--use_gpt_attention_plugin bfloat16 \
|
|
--output_dir ./tmp/baichuan_v1_13b/trt_engines/bf16/1-gpu/
|
|
|
|
# Build the Baichuan V1 13B model using a single GPU and apply INT8 weight-only quantization.
|
|
python build.py --model_version v1_13b \
|
|
--model_dir baichuan-inc/Baichuan-13B-Chat \
|
|
--dtype float16 \
|
|
--use_gemm_plugin float16 \
|
|
--use_gpt_attention_plugin float16 \
|
|
--use_weight_only \
|
|
--output_dir ./tmp/baichuan_v1_13b/trt_engines/int8_weight_only/1-gpu/
|
|
|
|
# Build the Baichuan V1 13B model using a single GPU and apply INT4 weight-only quantization.
|
|
python build.py --model_version v1_13b \
|
|
--model_dir baichuan-inc/Baichuan-13B-Chat \
|
|
--dtype float16 \
|
|
--use_gemm_plugin float16 \
|
|
--use_gpt_attention_plugin float16 \
|
|
--use_weight_only \
|
|
--weight_only_precision int4 \
|
|
--output_dir ./tmp/baichuan_v1_13b/trt_engines/int4_weight_only/1-gpu/
|
|
|
|
# Build Baichuan V1 13B using 2-way tensor parallelism.
|
|
python build.py --model_version v1_13b \
|
|
--model_dir baichuan-inc/Baichuan-13B-Chat \
|
|
--dtype float16 \
|
|
--use_gemm_plugin float16 \
|
|
--use_gpt_attention_plugin float16 \
|
|
--output_dir ./tmp/baichuan_v1_13b/trt_engines/fp16/2-gpu/ \
|
|
--world_size 2
|
|
```
|
|
|
|
#### INT8 weight only + INT8 KV cache
|
|
For INT8 KV cache, [`hf_baichuan_convert.py`](./hf_baichuan_convert.py) features a
|
|
`--calibrate-kv-cache, -kv` option. Setting `-kv` will calibrate the model,
|
|
and then export the scaling factors needed for INT8 KV cache inference.
|
|
|
|
|
|
Example:
|
|
|
|
```bash
|
|
python3 hf_baichuan_convert.py -i baichuan-inc/Baichuan-13B-Chat -o ./tmp/baichuan_v1_13b/int8_kv_cache/ --calibrate-kv-cache -t fp16
|
|
```
|
|
|
|
[`build.py`](./build.py) add new options for the support of INT8 KV cache.
|
|
|
|
`--int8_kv_cache` is the command-line option to enable INT8 KV cache.
|
|
|
|
In addition, it could be combined with INT8 weight-only quantization, as follows:
|
|
|
|
Examples of INT8 weight-only quantization + INT8 KV cache
|
|
|
|
```bash
|
|
# Build model with both INT8 weight-only and INT8 KV cache enabled
|
|
python build.py --model_version v1_13b \
|
|
--bin_model_dir=./tmp/baichuan_v1_13b/int8_kv_cache/1-gpu/ \
|
|
--dtype float16 \
|
|
--use_gpt_attention_plugin float16 \
|
|
--use_gemm_plugin float16 \
|
|
--output_dir ./tmp/baichuan_v1_13b/trt_engines/int8_kv_cache_weight_only/1-gpu \
|
|
--int8_kv_cache \
|
|
--use_weight_only
|
|
```
|
|
|
|
#### SmoothQuant
|
|
|
|
The SmoothQuant supports all Baichuan model variants. Unlike the FP16 build where the HF weights are processed and loaded into the TensorRT-LLM directly, the SmoothQuant needs to load INT8 weights which should be pre-processed before building an engine.
|
|
|
|
Example:
|
|
```bash
|
|
python3 hf_baichuan_convert.py -i baichuan-inc/Baichuan-13B-Chat -o ./tmp/baichuan_v1_13b/sq0.8/ -sq 0.8 --tensor-parallelism 1 --storage-type fp16
|
|
```
|
|
|
|
[`build.py`](./build.py) add new options for the support of INT8 inference of SmoothQuant models.
|
|
|
|
`--use_smooth_quant` is the starting point of INT8 inference. By default, it
|
|
will run the model in the _per-tensor_ mode.
|
|
|
|
Then, you can add any combination of `--per-token` and `--per-channel` to get the corresponding behaviors.
|
|
|
|
Examples of build invocations:
|
|
|
|
```bash
|
|
# Build model for SmoothQuant in the _per_tensor_ mode.
|
|
python3 build.py --model_version v1_13b \
|
|
--bin_model_dir=./tmp/baichuan_v1_13b/sq0.8/1-gpu/ \
|
|
--use_smooth_quant \
|
|
--use_gpt_attention_plugin float16 \
|
|
|
|
# Build model for SmoothQuant in the _per_token_ + _per_channel_ mode
|
|
python3 build.py --model_version v1_13b \
|
|
--bin_model_dir=./tmp/baichuan_v1_13b/sq0.8/1-gpu/ \
|
|
--use_smooth_quant \
|
|
--use_gpt_attention_plugin float16 \
|
|
--per_token \
|
|
--per_channel
|
|
```
|
|
|
|
Note we use `--bin_model_dir` instead of `--model_dir` and `--meta_ckpt_dir` since SmoothQuant model needs INT8 weights and various scales from the binary files.
|
|
|
|
### Run
|
|
|
|
To run a TensorRT-LLM Baichuan model using the engines generated by build.py
|
|
|
|
```bash
|
|
# With fp16 inference
|
|
python run.py --model_version v1_13b \
|
|
--max_output_len=50 \
|
|
--tokenizer_dir baichuan-inc/Baichuan-13B-Chat \
|
|
--engine_dir=./tmp/baichuan_v1_13b/trt_engines/fp16/1-gpu/
|
|
|
|
# With bf16 inference
|
|
python run.py --model_version v1_13b \
|
|
--max_output_len=50 \
|
|
--tokenizer_dir baichuan-inc/Baichuan-13B-Chat \
|
|
--engine_dir=./tmp/baichuan_v1_13b/trt_engines/bf16/1-gpu/
|
|
|
|
# With INT8 weight-only quantization inference
|
|
python run.py --model_version v1_13b \
|
|
--max_output_len=50 \
|
|
--tokenizer_dir=baichuan-inc/Baichuan-13B-Chat \
|
|
--engine_dir=./tmp/baichuan_v1_13b/trt_engines/int8_weight_only/1-gpu/
|
|
|
|
# With INT4 weight-only quantization inference
|
|
python run.py --model_version v1_13b \
|
|
--max_output_len=50 \
|
|
--tokenizer_dir=baichuan-inc/Baichuan-13B-Chat \
|
|
--engine_dir=./tmp/baichuan_v1_13b/trt_engines/int8_weight_only/1-gpu/
|
|
|
|
# With 2-way tensor parallelism inference
|
|
mpirun -n 2 --allow-run-as-root \
|
|
python run.py --model_version v1_13b \
|
|
--max_output_len=50 \
|
|
--tokenizer_dir=baichuan-inc/Baichuan-13B-Chat \
|
|
--engine_dir=./tmp/baichuan_v1_13b/trt_engines/fp16/2-gpu/
|
|
```
|
|
|
|
### Summarization using the Baichuan model
|
|
|
|
```bash
|
|
# Run summarization using the Baichuan V1 13B model in FP16.
|
|
python summarize.py --model_version v1_13b \
|
|
--test_trt_llm \
|
|
--hf_model_location baichuan-inc/Baichuan-13B-Chat \
|
|
--data_type fp16 \
|
|
--engine_dir ./tmp/baichuan_v1_13b/trt_engines/fp16/1-gpu/
|
|
|
|
# Run summarization using the Baichuan V1 13B model quantized to INT8.
|
|
python summarize.py --model_version v1_13b \
|
|
--test_trt_llm \
|
|
--hf_model_location baichuan-inc/Baichuan-13B-Chat \
|
|
--data_type fp16 \
|
|
--engine_dir ./tmp/baichuan_v1_13b/trt_engines/int8_weight_only/1-gpu/
|
|
|
|
# Run summarization using the Baichuan V1 13B model in FP16 using two GPUs.
|
|
mpirun -n 2 --allow-run-as-root \
|
|
python summarize.py --model_version v1_13b \
|
|
--test_trt_llm \
|
|
--hf_model_location baichuan-inc/Baichuan-13B-Chat \
|
|
--data_type fp16 \
|
|
--engine_dir ./tmp/baichuan_v1_13b/trt_engines/fp16/2-gpu/
|
|
```
|
|
|
|
### Known Issues
|
|
|
|
* The implementation of the Baichuan-7B model with INT8 Weight-Only and Tensor
|
|
Parallelism greater than 2 might have accuracy issues. It is under
|
|
investigation.
|