TensorRT-LLMs/examples/internlm/README.md
Kaiyu Xie f044eb8d94
Update TensorRT-LLM (#302)
* Update TensorRT-LLM

---------

Co-authored-by: wangruohui <12756472+wangruohui@users.noreply.github.com>
2023-11-07 19:51:58 +08:00

308 lines
13 KiB
Markdown

# InternLM
This document shows how to build and run InternLM 7B / 20B models in TensorRT-LLM on both single GPU, single node multi-GPU and multi-node multi-GPU.
## Overview
The TensorRT-LLM InternLM implementation can be found in [tensorrt_llm/models/internlm/model.py](../../tensorrt_llm/models/internlm/model.py). The TensorRT-LLM InternLM example code is located in [`examples/internlm`](./). There are three main files in that folder::
* [`build.py`](./build.py) to build the [TensorRT](https://developer.nvidia.com/tensorrt) engine(s) needed to run the InternLM model,
* [`run.py`](./run.py) to run the inference on an input text,
* [`summarize.py`](./summarize.py) to summarize the articles in the [cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail) dataset using the model.
## Support Matrix
* FP16 / BF16
* INT8 & INT4 Weight-Only
* Smooth Quant
* INT8 KV Cache
* Tensor Parallel & Pipeline Parallel
## Usage
The TensorRT-LLM InternLM example code locates at [examples/internlm](./). It takes HF weights as input, and builds the corresponding TensorRT engines. The number of TensorRT engines depends on the number of GPUs used to run inference.
### Build TensorRT engine(s)
TensorRT-LLM InternLM builds TensorRT engine(s) from HF checkpoint. If no checkpoint directory is specified, TensorRT-LLM will build engine(s) with dummy weights.
InternLM has released several checkpoints of different size or capabilities under https://huggingface.co/internlm. Users can pick any one repository and follow instructions to prepare the checkpoint.
Below examples use [internlm-chat-7b](https://huggingface.co/internlm/internlm-chat-7b) and [internlm-chat-20b](https://huggingface.co/internlm/internlm-chat-20b) and assume these repositories are cloned or linked under this directory, for example `./internlm-chat-7b/`.
Normally `build.py` only requires single GPU, but if you've already got all the GPUs needed while inferencing, you could enable parallel building to make the engine building process faster by adding `--parallel_build` argument. Please note that currently `parallel_build` feature only supports single node.
Here're some examples:
```bash
# Build a single-GPU float16 engine from HF weights.
# use_gpt_attention_plugin is necessary in InternLM.
# Try use_gemm_plugin to prevent accuracy issue.
# It is recommend to use --remove_input_padding along with --use_gpt_attention_plugin for better performance
# Build the InternLM 7B model using a single GPU and FP16.
python build.py --model_dir ./internlm-chat-7b/ \
--dtype float16 \
--remove_input_padding \
--use_gpt_attention_plugin float16 \
--enable_context_fmha \
--use_gemm_plugin float16 \
--output_dir ./internlm-chat-7b/trt_engines/fp16/1-gpu/
# Build the InternLM 7B model using a single GPU and BF16.
python build.py --model_dir ./internlm-chat-7b/ \
--dtype bfloat16 \
--remove_input_padding \
--use_gpt_attention_plugin bfloat16 \
--enable_context_fmha \
--use_gemm_plugin bfloat16 \
--output_dir ./internlm-chat-7b/trt_engines/bf16/1-gpu/
# Build the InternLM 7B model using a single GPU and apply INT8 weight-only quantization.
python build.py --model_dir ./internlm-chat-7b/ \
--dtype float16 \
--remove_input_padding \
--use_gpt_attention_plugin float16 \
--enable_context_fmha \
--use_gemm_plugin float16 \
--use_weight_only \
--output_dir ./internlm-chat-7b/trt_engines/weight_only/1-gpu/
# Note: setting `--weight_only_precision int4` to use INT4 weight-only quantization
# Build InternLM 7B using 2-way tensor parallelism.
python build.py --model_dir ./internlm-chat-7b/ \
--dtype float16 \
--remove_input_padding \
--use_gpt_attention_plugin float16 \
--enable_context_fmha \
--use_gemm_plugin float16 \
--output_dir ./internlm-chat-7b/trt_engines/fp16/2-gpu/ \
--world_size 2 \
--tp_size 2 \
--parallel_build
# Build InternLM 20B using 2-way tensor parallelism and 2-way pipeline parallelism.
python build.py --model_dir ./internlm-chat-20b/ \
--dtype bfloat16 \
--remove_input_padding \
--use_gpt_attention_plugin bfloat16 \
--enable_context_fmha \
--use_gemm_plugin bfloat16 \
--output_dir ./internlm-chat-20b/trt_engines/bf16/4-gpu/ \
--world_size 4 \
--tp_size 2 \
--pp_size 2 \
--parallel_build
```
#### INT8 weight only + INT8 KV cache
For INT8 KV cache, [`hf_internlm_convert.py`](./hf_internlm_convert.py) features a
`--calibrate-kv-cache, -kv` option. Setting `-kv` will calibrate the model,
and then export the scaling factors needed for INT8 KV cache inference.
Example:
```bash
# For 7B models
python hf_internlm_convert.py -i ./internlm-chat-7b -o ./internlm-chat-7b/smooth_internlm/int8_kv_cache/ --calibrate-kv-cache -t fp16
# For 20B models
python hf_internlm_convert.py -i ./internlm-chat-20b -o ./internlm-chat-20b/smooth_internlm/int8_kv_cache/ --calibrate-kv-cache -t fp16
```
[`build.py`](./build.py) add new options for the support of INT8 KV cache.
`--int8_kv_cache` is the command-line option to enable INT8 KV cache.
In addition, it could be combined with INT8 weight-only quantization, as follows:
Examples of INT8 weight-only quantization + INT8 KV cache
```bash
# Build 7B model with both INT8 weight-only and INT8 KV cache enabled
python build.py --ft_model_dir=./internlm-chat-7b/smooth_internlm/int8_kv_cache/1-gpu/ \
--dtype float16 \
--use_gpt_attention_plugin float16 \
--use_gemm_plugin float16 \
--output_dir ./internlm-chat-7b/trt_engines/int8_kv_cache_weight_only/1-gpu \
--int8_kv_cache \
--use_weight_only
# Build 20B model with both INT8 weight-only and INT8 KV cache enabled
python build.py --ft_model_dir=./internlm-chat-20b/smooth_internlm/int8_kv_cache/1-gpu/ \
--dtype float16 \
--use_gpt_attention_plugin float16 \
--use_gemm_plugin float16 \
--output_dir ./internlm-chat-20b/trt_engines/int8_kv_cache_weight_only/1-gpu \
--int8_kv_cache \
--use_weight_only
```
Test with `run.py` or `summarize.py`:
```bash
python run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm-chat-7b/ \
--engine_dir ./internlm-chat-7b/trt_engines/int8_kv_cache_weight_only/1-gpu
python run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm-chat-20b/ \
--engine_dir ./internlm-chat-20b/trt_engines/int8_kv_cache_weight_only/1-gpu
python summarize.py --test_trt_llm --test_hf \
--hf_model_location ./internlm-chat-7b \
--data_type fp16 \
--engine_dir ./internlm-chat-7b/trt_engines/int8_kv_cache_weight_only/1-gpu
python summarize.py --test_trt_llm --test_hf \
--hf_model_location ./internlm-chat-20b \
--data_type fp16 \
--engine_dir ./internlm-chat-20b/trt_engines/int8_kv_cache_weight_only/1-gpu
```
#### SmoothQuant
Unlike the FP16 build where the HF weights are processed and loaded into the TensorRT-LLM directly, the SmoothQuant needs to load INT8 weights which should be pre-processed before building an engine.
Example:
```bash
# For 7B models
python hf_internlm_convert.py -i ./internlm-chat-7b -o ./internlm-chat-7b/smooth_internlm/sq0.5/ -sq 0.5 --tensor-parallelism 1 --storage-type fp16
# For 20B models
python hf_internlm_convert.py -i ./internlm-chat-20b -o ./internlm-chat-20b/smooth_internlm/sq0.5/ -sq 0.5 --tensor-parallelism 1 --storage-type fp16
```
[`build.py`](./build.py) add new options for the support of INT8 inference of SmoothQuant models.
`--use_smooth_quant` is the starting point of INT8 inference. By default, it
will run the model in the _per-tensor_ mode.
Then, you can add any combination of `--per-token` and `--per-channel` to get the corresponding behaviors.
Examples of build invocations:
```bash
# Build model for SmoothQuant in the _per_tensor_ mode.
# 7B model
python build.py --ft_model_dir=./internlm-chat-7b/smooth_internlm/sq0.5/1-gpu/ \
--use_smooth_quant \
--output_dir ./internlm-chat-7b/trt_engines/smoothquant/1-gpu
# 20B model
python build.py --ft_model_dir=./internlm-chat-20b/smooth_internlm/sq0.5/1-gpu/ \
--use_smooth_quant \
--output_dir ./internlm-chat-20b/trt_engines/smoothquant/1-gpu
# OR build model for SmoothQuant in the _per_token_ + _per_channel_ mode
# 7B model
python build.py --ft_model_dir=./internlm-chat-7b/smooth_internlm/sq0.5/1-gpu/ \
--use_smooth_quant \
--per_token \
--per_channel \
--output_dir ./internlm-chat-7b/trt_engines/smoothquant/1-gpu
# 20B model
python build.py --ft_model_dir=./internlm-chat-20b/smooth_internlm/sq0.5/1-gpu/ \
--use_smooth_quant \
--per_token \
--per_channel \
--output_dir ./internlm-chat-20b/trt_engines/smoothquant/1-gpu
```
Note we use `--ft_model_dir` instead of `--model_dir` and `--meta_ckpt_dir` since SmoothQuant model needs INT8 weights and various scales from the binary files.
Test with `run.py` or `summarize.py`:
```bash
python run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm-chat-7b/ \
--engine_dir ./internlm-chat-7b/trt_engines/smoothquant/1-gpu
python run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm-chat-20b/ \
--engine_dir ./internlm-chat-20b/trt_engines/smoothquant/1-gpu
python summarize.py --test_trt_llm --test_hf \
--hf_model_location ./internlm-chat-7b \
--data_type fp16 \
--engine_dir ./internlm-chat-7b/trt_engines/smoothquant/1-gpu
python summarize.py --test_trt_llm --test_hf \
--hf_model_location ./internlm-chat-20b \
--data_type fp16 \
--engine_dir ./internlm-chat-20b/trt_engines/smoothquant/1-gpu
```
### Run
To run a TensorRT-LLM InternLM model using the engines generated by build.py
```bash
# InternLM 7B with fp16
python run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm-chat-7b/ \
--engine_dir=./internlm-chat-7b/trt_engines/fp16/1-gpu/
# InternLM 7B with bf16
python run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm-chat-7b/ \
--engine_dir=./internlm-chat-7b/trt_engines/bf16/1-gpu/
# InternLM 7B with int8 weight only quantization
python run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm-chat-7b/ \
--engine_dir=./internlm-chat-7b/trt_engines/weight_only/1-gpu/
# InternLM 7B with fp16 and tensor parallelism
mpirun -n 2 --allow-run-as-root \
python run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm-chat-7b/ \
--engine_dir=./internlm-chat-7b/trt_engines/fp16/2-gpu/
# InternLM 20B with fp16 and tensor parallelism and pipeline parallelism
mpirun -n 4 --allow-run-as-root \
python run.py --max_output_len=120 \
--input_text 'Tell me about yourself.' \
--tokenizer_dir ./internlm-chat-7b/ \
--engine_dir=./internlm-chat-7b/trt_engines/bf16/4-gpu/
```
### Summarization using the InternLM model
```bash
# Run summarization using the InternLM 7B model in FP16.
python summarize.py --test_trt_llm --test_hf \
--hf_model_location ./internlm-chat-7b/ \
--data_type fp16 \
--engine_dir ./internlm-chat-7b/trt_engines/fp16/1-gpu/
# Run summarization using the InternLM 7B model quantized to INT8.
python summarize.py --test_trt_llm --test_hf \
--hf_model_location ./internlm-chat-7b/ \
--data_type fp16 \
--engine_dir ./internlm-chat-7b/trt_engines/weight_only/1-gpu/
# Run summarization using the InternLM 7B model in FP16 using two GPUs.
mpirun -n 2 --allow-run-as-root \
python summarize.py --test_trt_llm --test_hf \
--hf_model_location ./internlm-chat-7b/ \
--data_type fp16 \
--engine_dir ./internlm-chat-7b/trt_engines/fp16/2-gpu/
# Run summarization using the InternLM 20B model in BF16 using 4 GPUs.
mpirun -n 4 --allow-run-as-root \
python summarize.py --test_trt_llm --test_hf \
--hf_model_location ./internlm-chat-20b/ \
--data_type bf16 \
--engine_dir ./internlm-chat-20b/trt_engines/bf16/4-gpu/
```